
STAF Execution Engine (STAX) Service User's Guide

STAX Service User's Guide
STAf eXecution engine
Version 1.5.10

April 17, 2005

Document Owners: Sharon Lucas, David Bender, Charles Rankin
eMail Addresses: lucass@us.ibm.com, bdavid@us.ibm.com, rankinc@us.ibm.com

Table of Contents

Overview

Concepts

Using XML to Define STAX Jobs

Using Python for Expression Evaluation

Element Syntax and Usage

● Root: stax
● Python Code Execution: script
● Actions: process, stafcmd, job, nop
● Sequential Execution: sequence
● Parallel Execution: parallel, paralleliterate
● Functions: function, call, call-with-list, call-with-map, defaultcall, return, import
● Loops: loop, iterate, break, continue
● Conditional: if / elseif / else
● Wrappers: block, testcase / tcstatus, timer
● Directives: hold, release, terminate
● Exceptions: try / catch, throw, rethrow
● Signals: raise, signalhandler
● Logging / Messages: log, message

System Requirements

● Software Requirements
● Hardware Requirements

Installation and Configuration

● STAX Service Machine
● Requesting Machine

file:///C|/temp/staxug/staxug.html (1 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

● Execution Machine
● Monitoring Machine

Request Syntax

● EXECUTE
● GET
● HELP
● HOLD
● LIST
● QUERY
● RELEASE
● SET
● START
● STOP
● TERMINATE
● UPDATE
● VERSION

STAX Monitoring

● Starting the STAX Monitor
● Setting STAX Monitor Properties
● Displaying a List of Active Jobs
● Submitting a New Job for Execution

❍ Using the Job Wizard
● Monitoring a Job
● Displaying a Job Log

STAX Logging

STAX Variables

STAX Extensions

● Registering STAX Service Extensions
● Creating a STAX Extensions XML File
● Registering STAX Monitor Extensions

Generating STAX Function Documentation using a XSL Stylesheet

Debugging

Support Information

● Known Problems
● History of Changes

file:///C|/temp/staxug/staxug.html (2 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

Appendix A: Comparison of STAX with GenWL

Appendix B: STAX XML Document Examples

● STAX Utility Functions
● Sample STAX Jobs

Appendix C: STAX Error Code Reference

Appendix D: STAX Document Type Definition (DTD)

Appendix E: STAX Extensions Document Type Definition (DTD)

Appendix F: References

Appendix G: Jython and CPython Differences

Appendix H: Licenses and Acknowledgements

Overview
STAX (STAf eXecution engine) is an XML-based execution engine implemented as an external STAF service. STAX was
designed to make it significantly easier to automate the workflow of your tests and test environments.

STAX accepts job definitions, in the form of XML documents. Fundamentally, these job definitions allow you to specify the
processes and STAF commands necessary to perform the job. STAX provides a wealth of expressive functionality on top of this,
making it easy to implement, manage, track, and monitor your jobs.

STAX uses the Python scripting language for variable and expression evaluation. The Python code is executed by Jython, a version
of Python written entirely in Java. This allows STAX to take advantage of the powerful and easy-to-use features of Python.

The sections that follow describe the basic concepts behind STAX, explain the STAX XML language used to define your jobs, and
detail the commands externalized by the STAX service. Read on to find out more about the exciting new world of STAX.

Concepts
STAX Elements

A STAX Element is a node in a STAX XML document. Some of the items that STAX Elements can represent are: data to be used
during the job, commands/processes to be executed, definitions of the logic and control flow within the job, exceptions and signals,
and wrappers such as functions and blocks that encompass other STAX Elements.

Processes and Commands

A STAX job definition describes the execution flow for processes and STAF commands. A process element really defines the

file:///C|/temp/staxug/staxug.html (3 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

execution information for a STAF PROCESS START command. A process element specifies a command to be executed and the
machine where it should run. For example, the command could specify to run a Java application or a Rexx file which is one of
your testcases. A stafcmd element defines execution information for other STAF commands. A stafcmd element specifies the
STAF service and request to be executed (e.g. RESPOOL REQUEST POOL, FS COPY FILE) and the machine where it should be
run. Processes and stafcmds may be put into sequential and/or parallel wrappers which can be nested.

Expression Evaluation via Python

STAX allows you to avoid hard-coding information in your job definition by using Python to assign values to variables and then
using Python scripting language to evaluate expressions and to execute Python code. STAX also sets some variables in Python that
provide runtime information about the job definition's execution.

For example, instead of hardcoding the name of the machines where processes and commands are executed during the job, a
Python variable can be assigned the name of the machine and specified for the location element. Python variables also be provided
at the time the job is requested to be executed. A Python variable may also be assigned a list of machine names.

After STAX processes some elements (e.g. process and stafcmd), the return code and result (if applicable) are accessible via STAX
variables. These variables can be referenced by other STAX elements (e.g. via the if element's expression attribute) to determine
logic flow within the job.

Groups

STAX can execute groups of STAX Elements sequentially or in parallel. When Elements are executed in parallel, STAX will run
each of the Elements on a separate thread.

Loops

Loop Elements are available which allow a STAX Element to be executed repeatedly. Additionally, there are Iterate Elements
which allow a STAX Element to be executed repeatedly while stepping through a list of data for each iteration (this could be used,
for example, to execute a sequence of commands for each machine in a list).

STAX-Threads

When the STAX Service executes elements in parallel, rather than using real system threads (and thereby potentially creating an
overabundance of system threads), the STAX Service will simulate the threading capabilities via a thread pool which will utilize a
manageable number of real system threads. These simulated threads are called STAX-Threads.

Whenever a new STAX-Thread is created, existing variables are cloned from the parent STAX-Thread. To create a global variable
that can be accessed across STAX-Threads, use the STAXGlobal class described in "Function" section. STAX elements that can
create STAX-Threads include the following: <parallel>, <paralleliterate>, <process-action>, and <function> elements with a local
scope.

Wrappers

STAX has several Wrapper Elements which simply provide additional functionality to another STAX Element. These Wrapper
Elements can denote Testcases (with testcase status), Blocks (for which execution control can be manipulated), Timers (for time-
based execution control), and Functions (which provide a unique name that can be called from other STAX Elements in the Job
Definition.

Functions

Functions are a nearly universal program-structuring device. Functions serve two primary development roles: code reuse and

file:///C|/temp/staxug/staxug.html (4 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

procedural decomposition. Functions are the simplest way to package logic you may wish to use in more than one place and more
than one time. Functions allow us to group and parametize chunks of XML to be used arbitrarily many times later. Functions also
provide a tool for splitting jobs into pieces that have a well-defined role. STAX allows functions to be imported from other XML
files so that you can build up libraries of STAX functions that can be reused by many different STAX jobs.

Sub-Jobs

STAX provides a "job" element so that sub-jobs can be executed within a parent job with synchronized completion as well as
providing access to the sub-job result.

Logic Flow

STAX provides an "if" element which can evaluate conditions using Python (for example, a return code) to determine logic flow
within the STAX Job Definition, thus allowing job flow to branch dynamically.

Exceptions and Signals

The STAX Service provides exception and signal handling capabilities. STAX exception handlers alter the execution flow of the
job. STAX signal handlers provide asynchronous error handling of raised signals. The STAX execution engine may also raise
signals or throw exceptions for errors which occur during job execution.

Monitoring STAX Jobs

A STAX Monitor application is available for the STAX Service. This application displays a graphical representation of the
currently running elements of a given Job. The STAX Monitor makes it easy to see which processes and STAF commands are
currently running as well as the blocks which contain them. You may select a process or STAF command to get more detailed
information about it. You may also select a block and then control the execution of the job by choosing to hold, release, or
terminate the block. The STAX Monitor also displays a list of testcases that have been run and the number of passes and fails for
each. Also, a messages panel displays any messages that are sent by the job. This can help make debugging a job definition easy.

Logging

The STAX Service maintains a service log which records high level information about all jobs that have been submitted.

The STAX Service also maintains an individual job log for each submitted job. These job-specific logs record information such as
testcase status and job execution tracing. If the "log" element is used within the STAX Job Definition, then a user log is also
created for the submitted job.

Using XML to Define STAX Jobs
STAX uses XML (Extensible Markup Language) to describe STAX job definitions. XML is a language defined by the World
Wide Web Consortium (W3C), the body that sets the standards for the Web. It is called extensible because it is not a fixed format
like HTML (a single, predefined markup language). Instead, XML is actually a 'metalanguage' -- a language for describing other
languages -- which lets you design your own customized markup languages for limitless different types of documents. This section
reviews some XML fundamentals. Refer to the "References" section for where to get more information about XML.

Both markup and text in an XML document are case-sensitive. All XML processing instructions start with <? and end with ?>.

file:///C|/temp/staxug/staxug.html (5 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

XML comments start with <!-- and end with -->. In XML, tags always start with < and end with >. The names that can be used for
a tag are defined by the DTD (Document Type Definition).

XML documents are made up of XML elements. Much like in HTML, you create XML elements with an opening tag, such as
<stax>, followed by the element content (if any), such as text or other elements, and ending with the matching closing tag that
starts with </, such as </stax>. It's necessary to enclose the entire document, except for processing instructions, in one element,
called the root element -- that's the <stax> element here:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE stax SYSTEM "stax.dtd">
<stax>
 .
 .
 .
</stax>

Empty Elements

Empty elements have only one tag, not a start and end tag. In XML, you close an empty element with />. For example, nop is an
empty element:

<nop/>

Attributes

Attributes in XML are name-value pairs that let you specify additional data in start and empty tags. To assign a value to an
attribute, you use an equal sign. Because markup is always text, attributes are also text. Even if you're assigning a number to an
attribute, you treat that number as a text string and enclose it in quotes. In XML, you must enclose attribute values in quotation
marks. Usually, you use double quotes, but if the attribute value itself contains double quotes, you can use single quotes to
surround the text.

If the attribute value contains both single and double quotes, you can use the XML-defined entity ' for a single quote and
" for double quotes.

An example of a defaultcall element with a function attribute is:

<defaultcall function="MainFunction"/>

Creating a STAX XML document

The root element can contain other elements, of course. Here, I added elements for three functions to the document and added one
element that defines the function to call first by default. Note that the function element has an attribute called name and the
defaultcall element is empty and has an attribute called function.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE stax SYSTEM "stax.dtd">
<stax>
 <defaultcall function="FunctionA"/>

 <function name="FunctionA">
 ...
 </function>

file:///C|/temp/staxug/staxug.html (6 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 <function name="FunctionB">
 ...
 </function>

 <function name="FunctionC">
 ...
 </function>
</stax>

The function element can contain a single task element as defined by the STAX DTD. Here, I added a process element to
FunctionA, a stafcmd element to FunctionB, and a log element to functionC. A process element can contain other elements. In this
case I added location, command, and parms. A stafcmd element can contain other elements. In this case I added location, service,
and request.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE stax SYSTEM "stax.dtd">
<stax>
 <defaultcall function="FunctionA"/>

 <function name="FunctionA">
 <process>
 <location>'local'</location>
 <command>'java'</command>
 <parms>'com.ibm.staf.service.stax.TestProcess 2 4 0'
 </process>
 </function>

 <function name="FunctionB">
 <stafcmd>
 <location>'local'</location>
 <service>'misc'</service>
 <request>'version'</request>
 </stafcmd>
 </function>

 <function name="FunctionC">
 <log>'This function logs this message'</log>
 </function>
</stax>

Document Type Definition (DTD)

The STAX DTD specifies the correct syntax of the document. A STAX XML document is valid if it complies with the STAX
DTD. A DTD is a formal description in XML Declaration Syntax of a particular type of document. It defines what names are to be
used for the different types of elements, where they may occur, and how they all fit together. Refer to the "STAX Document Type
Definition (DTD)" section to see the entire STAX DTD.

For example, the STAX DTD allows you to describe a STAF Command which has a name attribute and contains location, service,
and request elements. The relevant part of the STAX DTD contains:

 <!ELEMENT stafcmd (location, service, request)>
 <!ATTLIST stafcmd
 name CDATA #IMPLIED

file:///C|/temp/staxug/staxug.html (7 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 >
 <!ELEMENT location (#PCDATA)>
 <!ELEMENT service (#PCDATA)>
 <!ELEMENT request (#PCDATA)>

This defines a stafcmd as an element type containing location, service, and request elements; and it defines location, service, and
request as element types containing just plain text (Parsed Character Data or PCDATA) and defines name as an attribute type
containing just plain text (Character Data or CDATA). Validating parsers read the DTD before they read your document so that
they can identify where every element type ought to come and how each relates to the other, so that applications which need to
know this in advance (such as the STAX service) can set themselves up correctly. The example above lets you create STAF
commands like:

 <stafcmd name="'Delay'">
 <location>'local'</location>
 <service>'delay'</service>
 <request>'delay 5000'</request>
 </stafcmd>

A DTD provides applications with advance notice of what names and structures can be used in a particular document type. Using a
DTD when editing files means you can be certain that all documents which belong to a particular type will be constructed and
named in a consistent and conformant manner. The STAX service parses an XML document to break it down into its component
parts and then handles the resulting data. STAX uses the XML Parser for Java which is a validating XML parser.

Refer to the "References" section for where to get more information about the XML Parser for Java.

Using Python for Expression Evaluation
STAX uses the Python for variable and expression evaluation. STAX uses Jython to execute the Python code. Jython is an
implementation of the Python scripting language written in 100% pure Java that runs under any compliant Java Virtual Machine
(JVM). Using Jython, you can write Python code that interacts with any Java code.

STAX variable names must follow the Python variable naming conventions. In Python, variable names come into existence when
you assign values to them, but there are a few rules to follow when picking names for variables.

● Syntax: (underscore or letter) + (any number of letters, digits or underscores)
Variable names must start with an underscore or letter, and be followed by any number of letters, digits, or
underscores. _machine, machine, and Mach_1 are legal names, but 1_Mach, mach$, and @#! are not.

● Case matters: MACHNAME is not the same as machname
Python always pays attention to case, both in names you create and in reserved words. For instance, X and x refer to
two different variable names.

● Python reserved words are off limits
You cannot define variable names to be the same as words that mean special things in the Python language.
Following are reserved words in Python: and, assert, break, class, continue, def, del, elif, else, except, exec, finally,
for, from global, if, import, in, is, lambda, not, or, pass, print, raise, return, try, while.

Note: Python lets you use the names of Python built-in functions as variable names. However, we recommend that

file:///C|/temp/staxug/staxug.html (8 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

you don't use the name of a Python built-in function as a variable name because you may want to use the Python
built-in function at some point in your STAX job. Following are names of Python built-in functions: abs, basestring,
bool, callable, chr, classmethod, cmp, compile, complex, delattr, dict, dir, divmod, enumerate, eval, execfile, file,
filter, float, getattr, globals, hasattr, hash, help, hex, id, input, int, isinstance, issubclass, iter, len, locals, long, map,
max, min, object, oct, open, ord, pow, property, range, raw_input, reduce, reload, repr, round, setattr, slice,
staticmethod, str, sum, super, tuple, type, unichr, unicode, vars, xrange, zip.

● STAX reserved words are off limits
You should not define variable names to be the same as words that mean special things to the STAX service.
Following are reserved words in STAX:

■ RC
■ STAFResult
■ any word beginning with STAX (e.g. STAXJobName, STAXThreadID)
■ any word beginning with STAF (e.g. STAFResult, STAFRC)

Python string constants can be enclosed in single or double quotes, which allows embedded quotes of the opposite flavor.

For example, the following two lines do exactly the same thing in a STAX XML document. They assign a string constant (literal)
"CoolTest" to the value of a variable named testName.

<script>testName = "CoolTest1"</script>
<script>testName = 'CoolTest1'</script>

However, the following line is not the same. It assigns the value of a variable named CoolTest1 to the value of a variable named
testName. If this was not what you intended and a variable named CoolTest1 does not exist, a STAXPythonEvaluationError signal
is raised.

<script>testName = CoolTest1</script>

For elements and attributes whose values are evaluated via Python, we need to distinguish between literals and variables.

For example, the following request element's value contains a string constant which is concatenated with the value of a variable
named machName. So, if the value of variable machName is 'testA.austin.ibm.com', after being evaluated by Python, the request
element's value would be: 'RELEASE POOL ClientMachPool ENTRY testA.austin.ibm.com'.

<request>'RELEASE POOL ClientMachPool ENTRY ' + machName</request>

Another way to do this is:

<request>'RELEASE POOL ClientMachPool ENTRY %s' % (machName)</request>

where the %s indicates a String format (and can also be used for decimal format, etc.), and where the value of the machName
variable would replace the %s marker.

Also, note that the following two lines do exactly the same thing in a STAX XML document. They assign a string constant
(literal) "VerifyRC" to the function attribute's value.

<call function="'VerifyRC'"/>
<call function='"VerifyRC"'/>

However, the following line is not the same. It assigns the value of a variable named VerifyRC to the function attribute's value. If
a variable named VerifyRC does not exist, a STAXPythonEvaluationError signal is raised.

file:///C|/temp/staxug/staxug.html (9 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

<call function="VerifyRC"/>

Also, note that XML processors assume that < always starts a tag and that & always starts an entity reference, so you should avoid
using those characters for anything else. You must use the entity reference < instead of < and entity reference & instead of
& or else you'll get an XML parsing error. This can be difficult sometimes as the < character is used as the less-than operator in
Python, as in this example, where RC < 0 is being assigned to the expression attribute.

<if expr="RC < 0">

Here's another example that shows a <script> element that contains Python code using the regular expression (re) module to look
for pattern <pass> anywhere in a string.

<script>
 import re

 # Look for <pass> anywhere in the string.
 # Note have to use < to represent a < in the pattern.
 matchstr = r'.*?<pass>.*?'

 matchFlag = re.match(matchstr, STAFResult)
</script>

Refer to the "References" section for where to get more information about Jython and Python.

If you are already a CPython programmer, or are hoping to use CPython code under Jython, refer to the "Jython and CPython
Differences" section for information about differences in the two implementations of Python.

Element Syntax and Usage
A job to be executed by the STAX Service is described by an XML document. The XML document must comply with the STAX
document type definition (DTD) shown in "STAX Document Type Definition (DTD)". The function of the STAX XML document
is to describe STAF command and process execution.

The first line in an XML document should start with an XML declaration. This indicates the document is written in XML and
specifies the XML version, the language encoding for the document, and indicates that the document refers to an external DTD
(standalone="no").

The second line in an XML document should be the document type declaration. This is used to indicate the DTD used for the
document. It defines the name of the root element (stax), and the DTD to be used. STAX checks the syntax of XML documents
using a validating XML parser to verify that the document complies with the DTD. Note that DTDs are all about specifying the
structure and syntax of XML documents (not their content).

So, the first two lines in a STAX XML document should look like:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE stax SYSTEM "stax.dtd">

file:///C|/temp/staxug/staxug.html (10 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

This section describes the elements that can be used in a STAX XML document.

To ease the description of the elements, some elements will be grouped as follows so that they can be referenced as a group and
will be shown in bold italics:

 Reference Elements

 task process | stafcmd | nop |
 sequence | parallel | paralleliterate |
 call | call-with-list | call-with-map | return | import |
 if | loop | iterate | break | continue |
 try | throw | rethrow |
 signalhandler | raise |
 hold | release | terminate |
 testcase | tcstatus | script |
 block | timer | log | message

Notes:

● Elements and attribute names in an XML document are case sensitive. That is, element <sequence> is different from
<Sequence> and <SEQUENCE>.

● Only sequence, parallel and stax elements can contain multiple task elements.
● Names for elements (e.g. function names, block names, etc.) should not begin with STAX as these names are reserved for

future extensions and enhancements.

Also, some examples of the usage of elements use "..." for brevity to represent that additional XML would be included in place of
the "...".

Root: stax

An XML document must contain a root element which contains all other elements in the document. The root element of a STAX
XML document is stax.

stax

The stax element consists of any number of function, script, and/or signalhandler elements and an optional defaultcall element.

Usage:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE stax SYSTEM "stax.dtd">

<stax>

 <defaultcall function="FunctionA"/>
 <script>machName = "test1.austin.ibm.com"</script>

 <function name="FunctionA">
 ...
 </function>

file:///C|/temp/staxug/staxug.html (11 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 <function name="FunctionB">
 ...
 </function>
 ...

</stax>

Python Code Execution: script

STAX uses Python, which is an object-oriented scripting language. To specify Python code to be executed, you can use the script
element. The Python code can include any Python statements such as variable assignments, importing and running Python
modules, accessing Java libraries, and running built-in Python tools.

All script elements contained in the root stax element are initialized at the beginning of the job, as each is encountered in
sequential order, regardless of their placement within the stax element, and are accessible throughout the job (like global
variables). All script elements contained in elements other than the stax element (e.g. such as the sequence element) are assigned
as each is encountered and are accessible within their scope and are inherited from parent STAX-Threads.

Whenever a new STAX-Thread is created, existing variables are cloned from the parent STAX-Thread. To create a global variable
that can be accessed across STAX-Threads, use the STAXGlobal class described in "Function" section. STAX elements that can
create STAX-Threads include the following: parallel, paralleliterate, process-action, and function elements with a local scope.

script

The script element is used to specify Python code to be executed. For example, the script element can be used to define STAX
variables which are utilized during the parsing of the XML document and the subsequent execution of the STAX job. Note that a
STAX variable is used solely by the STAX job and is not associated with STAF variables. You can also use the script element to
import and run Python modules and built-in Python tools.

Usage:

Goal: Create a variable named testName and assign it value "CoolTest1"

<script>testName = "CoolTest1"</script>

Goal: Create a variable named machName and assign it the value of the STAFResult variable.

<script>machName = STAFResult</script>

Goal: Create a list called machList containing 10 machine names by running the STAF Resource Pool Request command in a loop
ten times, each time adding the STAF Result value from the RESPOOL REQUEST POOL command (which contains a machine
name) to the list. Note that this example first creates an empty list and then adds a machine name to the list 10 times.

<script>machList = []</script>
<script>clientPool = 'ClientMachinePool'</script>
<loop var="i" from="1" to="10">
 <sequence>
 <stafcmd>
 <location>'server1.austin.ibm.com'</location>
 <service>'RESPOOL'</service>
 <request>'REQUEST POOL %s' % (clientPool)</request>

file:///C|/temp/staxug/staxug.html (12 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 </stafcmd>
 <script>machList.append(STAFResult)</script>
 </sequence>
</loop>

Goal: Create a list called allMachList by combining lists named unallocMachList and allocMachList. New list allMachList
contains ['MachA','MachB','MachC','MachD','AllocMachA','AllocMachB'].

<script>unallocMachList = ['MachA','MachB','MachC','MachD']</script>
<script>allocMachList = ['AllocMachA','AllocMachB']</script>
<script>allMachList = unallocMachList + allocMachList</script>

Goal: Generate a random number (which could be used to randomly select which function to call) using the random module
provided by Python. Note that in Python, you can use a semicolon to separate multiple statements on the same line.

<script>from random import random; r=random()*100</script>

Goal: Use a Java class, com.ibm.staf.STAFUtil (provided in JSTAF.jar), and it's wrapData() method to turn strings containing
spaces into the colon-length-colon form needed for submitting a STAF Notify request. Note that the Java class STAFUtil needs to
be imported in order to use its wrapData() method. This example also shows that for statements that are too long to fit on one line,
Python lets you continue typing the statement on the next line, if you're coding something enclosed in (), {}, or [] pairs.
Continuation lines can start at any indentation level.

<script>
 NotifyProfile = 'Jane Smith'
 Message = 'STAX Job ID %s failed.' % (STAXJobID)

 from com.ibm.staf import STAFUtil

 Request = ('NOTIFY PROFILE %s LEVEL NORMAL MESSAGE %s' %
 (STAFUtil.wrapData(NotifyProfile), STAFUtil.wrapData(Message)))
</script>

<message>NotifyRequest</message>

The message element would display something like:

NOTIFY PROFILE :10:Jane Smith LEVEL NORMAL MESSAGE :21:STAX Job ID 6 failed.

Goal: Create a Python class object, Server, and generate three instance objects from the class and create a list of these Server
objects. Then iterate through the server list, logging information about each server object in the server list.

<script>
 # Define Server class
 class Server:
 def __init__(self, hostname, dir):
 self.hostname = hostname
 self.dir = dir
 def __repr__(self):
 return "<Server: hostname=%s, directory=%s>" % (self.hostname, self.dir)
 def getHostname(self):
 return self.hostname
 def getDir(self):

file:///C|/temp/staxug/staxug.html (13 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 return self.dir

 # Create an array of 3 Server objects
 serverList = [
 Server('myServer.austin.ibm.com', 'C:/install'),
 Server('serverA.portland.ibm.com', 'D:/install'),
 Server('linuxServer.austin.ibm.com', '/usr/local/install')
]
</script>

<iterate var="server" in="serverList" indexvar="i">
 <log>
 'Server #%s: hostname=%s, directory=%s' % (i+1, server.getHostname(),
server.getDir())
 </log>
</iterate>

Actions: process, stafcmd, job, nop

The process, stafcmd, job, and nop elements perform actions.

process

The process element represents a STAF process which will be executed on a specified machine.

After a process has completed (or if it could not be started) the following variables are set and can be referenced by the job:

● RC - the return code from the process. It is numeric. If it's the actual return code from the process, it is a Python Long
numeric type (e.g. 0L, 25L). If an error occurred starting the process, it is an Python Integer numeric type.

● STAFResult - the STAF result from starting the process. If the process failed to start successfully, it contains any error
messages from starting the process. It is a string.

● STAXResult - contains any files specified by returnstdout, returnstderr, and/or returnfile(s). If no files are returned,
STAXResult is set to special Python object None. If one or more files are returned, the format of STAXResult is a list as
follows:

[[<File 1 rc>, <File 1 data>], [<File 2 rc>, <File 2 data>], ...]

Each entry in the list represents a returned file and consists of a 2-element list as follows:
1. <File n rc> is a number containing the STAF return code indicating the success or failure of retrieving the file's

contents
2. <File n data> is a string containing the file's contents

Files will be returned in the order of standard output, then standard error, then any files specified with the returnfile(s)
element(s).

For example, assume that the standard output of a process was simply "This is stdout data", and that the standard error of a
process was "This is stderr data", and that you asked for both of these to be returned. STAXResult would look like the

file:///C|/temp/staxug/staxug.html (14 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

following.

[[0, 'This is stdout data'], [0, 'This is stderr data']]

The process element has one attribute:

● name - This element is optional. It is the name that the STAX Monitor uses to refer to the <process> element. It defaults to
Process<number>, where <number> is a unique number for each process executed in a job.

The process element contains the following elements in the order listed (with some variations). Refer to the "STAX Document
Type Definition (DTD)" section to see the DTD for the process element.

Note that these elements are equivalent to the options allowed for the STAF Process Service (except where noted), so see the
STAF User's Guide for more information.

The process element has the following required elements:

● location - Location specifies the machine where the process should be run. This element is required.

● command - This element is required.

This element has the following optional attributes:

❍ mode - specifies whether the command should be executed as though you were at a shell prompt. The value must
evaluate via Python to one of the following:

■ 'default' - specifies that the command should not be started via a separate shell. This is the default.
■ 'shell' - specifies that the command should be started via a separate shell. This allows complex commands

involving pipelines to be readily executed.
❍ shell - specifies the shell to use when starting the process via a separate shell. This attribute is used only if the

command's mode is set to 'shell'. The value overrides any shell defaults specified in the STAF configuration file. The
value is evaluated via Python to a string.

The process element has the following optional elements. Each of these optional elements may specify an if attribute. The if
attribute must evaluate via Python to a true or false value. If it does not evaluate to a true value, the element is ignored. The default
value for the if attribute is 1, a true value. Note that in Python, true means any nonzero number or nonempty object; false means
not true, such as a zero number, an empty object, or None. Comparisons and equality tests return 1 or 0 (true or false).

● parms - specifies any parameters that you wish to pass to the command. The value is evaluated via Python to a string. This
element is optional.

● workdir - specifies the directory from which the command should be executed. If you do not specify this element, the
command will be started from whatever directory STAFProc is currently in. The value is evaluated via Python to a string.
This element is optional.

● title - specifies the program title of the process. Unless overridden by the process, the title will be the text that is displayed
on the title bar of the application. The value is evaluated via Python to a string. This element is optional.

● workload - specifies the name of the workload for which this process is a member. This may be useful in conjunction with
other process elements. The value is evaluated via Python to a string. This element is optional.

● vars (or var) - specifies STAF variables that go into the process specific STAF variable pool. The value must evaluate via

file:///C|/temp/staxug/staxug.html (15 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

Python to a string or a list of strings. Multiple vars elements may be specified for a process. The format for each variable is:
'varname=value' So, a list containing 3 variables could look like: ['var1=value1', 'var2=value2', 'var3=value3']. Specifying
only one variable could look like either: ['var1=value1'] or 'var1=value1'. There can be 0 or more occurrences of this
element.

● envs (or env) - specifies environment variables that will be set for the process. Environment variables may be mixed case,
however most programs assume environment variable names will be uppercase, so, in most cases, ensure that your
environment variable names are uppercase. The value must evaluate via Python to a string or a list of strings. Multiple envs
elements may be specified for a process. The format for each variable is: 'varname=value' So, a list containing 3 variables
could look like: ['ENV_VAR_1=value1', 'ENV_VAR_2=value2', 'ENV_VAR_3=value3']. Specifying only one variable
could look like either: ['ENV_VAR_1=value1'] or 'ENV_VAR_1=value1'. There can be 0 or more occurrences of this
element.

● useprocessvars - specifies that STAF variable references should try to be resolved from the STAF variable pool associated
with the process being started first. If the STAF variable is not found in this pool, the STAF global variable pool should
then be searched. This element is optional and is an empty element.

● username - specifies the username under which the process should be started. The value is evaluated via Python to a string.
This element is optional.

● password - specifies the password with which to authenticate the user specified with the username element. The value is
evaluated via Python to a string. This element is optional.

● disabledauth - allows you to specify the action to take if a username/password is specified but authentication has been
disabled. This element is optional and is an empty element.

This element has the following required attribute (in addition to the if attribute):

❍ action - Must evaluate via Python to a string containing either:
■ 'error' - specifies that an error should be returned.
■ 'ignore' - specifies that any username/password specified is ignored if authentication is desabled.

This action overrides any default specified in the STAF configuration file.

● stdin - specifies the name of the file from which standard input will be read. The value is evaluated via Python to a string.
This element is optional.

● stdout - specifies the name of the file to which standard output will be redirected. The value is evaluated via Python to a
string. This element is optional.

This element has the following required attribute (in addition to the if attribute):

❍ mode - specifies what to do if the file already exists. The value must evaluate via Python to one of the following:
■ 'replace' - specifies that the file will be replaced. This is the default.
■ 'append' - specifies that the process' standard output will be appended to the file.

● stderr - specifies the file to which standard error will be redirected. The value is evaluated via Python to a string. This
element is optional.

This element has the following attribute (in addition to the if attribute):

❍ mode - specifies what to do if the file already exists or to redirect standard error to the same file as standard output.
The value must evaluate via Python to one of the following:

file:///C|/temp/staxug/staxug.html (16 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

■ 'replace' - specifies that the file will be replaced. This is the default.
■ 'append' - specifies that the process' standard error will be appended to the file.
■ 'stdout' - specifies that standard error will be redirected to the same file to which standard output is being

redirected. If a file name is specified, it is ignored.

● returnstdout - specifies to return in STAXResult the contents of the file where standard output was redirected when the
process completes. This element is optional and is an empty element.

● returnstderr - specifies to return in STAXResult the contents of the file where standard error was redirected when the
process completes. This element is optional and is an empty element.

● returnfiles (or returnfile) - specifies to return in STAXResult the contents of the specified file(s) when the process
completes. The value must evaluate via Python to a string (containing a file name) or a list of strings (each containing a file
name). There can be 0 or more occurrences of this element.

● stopusing - allows you to specify the method by which this process will be STOPed, if not overridden on the STOP
command. The value is evaluated via Python to a string. This element is optional.

● console - allows you to specify if the process should get a new console window or share the STAFProc console. This
element is optional and is an empty element.

This element has the following required attribute (in addition to the if attribute):

❍ use - Must evaluate via Python to a string containing either:
■ 'new' - specifies that the process should get a new console window. This option only has effect on Win32.

This is the default for Win32 and OS/2 systems.
■ 'same' - specifies that the process should share the STAFProc console. This option only has effect on Win32.

This is the default for Unix systems.

● statichandlename - specifies that a static handle should be created for this process. The value is evaluated via Python to a
string. It will be the registered name of the static handle. Using this option will also cause the environment variable
STAF_STATIC_HANDLE to be set appropriately for the process. This element is optional.

● other - specifies any other STAF parameters that may arise in the future. It is used to pass additional data to the STAF
PROCESS START request. The value is evaluated via Python to a string. This element is optional.

● process-action - specifies a task which will be executed after the process has started. This task will be executed in parallel
with the process via a new STAX-Thread. The task will be able to use the variable STAXProcessHandle to obtain the
process' handle in order to interact with the process. If the process completes before the task completes, the process will
remain in a non-complete state until the task completes. If the process cannot be started, the process-action task is not
executed. This element is optional, but if specified must be the last element in the <process> element.

Note: To create a global variable that can be accessed across STAX-Threads, use the STAXGlobal class described in
"Function" section.

Options allowed for the STAF Process Service which are not allowed for the STAX process element are as follows.

● WAIT
● ASYNC
● NOTIFY ONEND

These options should not be put in the other element.

file:///C|/temp/staxug/staxug.html (17 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

Usage:

In the following example of a process element, a Java program is executed. When the process completes, the if element is run
which checks the return code from the process.

<sequence>

 <process name="'TestProcess'">
 <location>'local'</location>
 <command>'java'</command>
 <parms>'com.ibm.staf.service.stax.TestProcess 5 1 0'</parms>
 <title>'Test Process'</title>
 </process>

 <if expr="RC != 0">
 <raise signal="'NonZeroRCError'"/>
 </if>

</sequence>

In the following example of a process element, a ping command is executed as though you were at a shell prompt. The ping is
executed within an infinite loop contained within a timer. If the ping command does not complete successfully (indicated by RC 0)
within 30 seconds, a failure message is sent.

<sequence>

 <timer duration="'30s'">
 <loop until="RC == 0">
 <process name="'Ping'">
 <location>'local'</location>
 <command mode="'shell'">'ping -n 1 -w 1 %s' % machName</command>
 </process>
 </loop>
 </timer>

 <if expr="RC != 0">
 <message>'Ping of machine %s failed' % machName</message>
 </if>

</sequence>

The following example of a process element shows many of the optional elements that a process can contain and shows the use of
the if element to specify whether an optional element should be used based on an expression evaluated while the job is running.

<script>
 machName = 'local'
 opSys = 'Win32'
 className = 'com.ibm.staf.service.stax.TestProcess'
 commonEnvVarList = ['COMMON_ENV_VAR_1=value1','COMMON_ENV_VAR_2=value2']
</script>

<process name="'aProcess'">
 <location>machName</location>

file:///C|/temp/staxug/staxug.html (18 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 <command>'java'</command>

 <parms if="opSys != 'Linux'">
 '%s 2 15 100' % className
 </parms>

 <title>'Title example for process with many elements'</title>

 <vars if="opSys == 'Win32'">
 ['tempPath=C:/temp', 'winRunPath=C:/temp/processa']
 </vars>

 <vars if="opSys == 'Linux'">
 ['tempPath=/test/temp']
 </vars>

 <var>
 'commonMachName=%s' % (machName)
 </var>

 <envs if="opSys == 'Win32'">
 ['TEMP_DIR=C:/temp']
 </envs>

 <envs>commonEnvVarList</envs>

 <useprocessvars if="opSys == 'Win32'"/>

 <disabledauth if="opSys == 'Win32'" action="'ignore'"/>

 <stdout mode="'replace'">
 'c:/temp/aProcess.out'
 </stdout>

 <stderr mode="'append'">
 'c:/temp/aProcess.err'
 </sdterr>

 <console if="opSys == 'Win32'" use="'same'"/>

</process>

In the following example of a process element, a command which writes to stdout and stderr and produces a couple of files
(C:\process1.inf and C:\process2.inf) is run. The contents of the stdout file and the two additional files are returned in STAXResult
when the process completes. Note that the stdout file also contains stderr output because <stderr> specified mode 'stdout' instead of
specifying a different file name. Then the contents all returned files are written to one central place, the STAX Job User Log.

<sequence>

 <process>
 <location>machName</location>
 <command>cmd</command>
 <stdout>'C:/temp.out'</stdout>
 <stderr mode="'stdout'"/>
 <returnstdout/>
 <returnfiles>['C:/process1.inf', 'C:/process2.inf']</returnfiles>

file:///C|/temp/staxug/staxug.html (19 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 </process>

 <if expr="RC != 0">
 <log level="'error'">
 'Process failed with RC=%s, Result=%s' % (RC, STAFResult)
 </log>

 <elseif expr="STAXResult != None">
 <iterate var="fileInfo" in="STAXResult" indexvar="i">
 <if expr="fileInfo[0] == 0">
 <sequence>
 <log level="'info'">fileInfo[1]</log>
 </sequence>
 <else>
 <log level="'error'">
 'Retrieval of file %s contents failed with RC=%s' % (i, fileInfo[0])
 </log>
 </else>
 </if>
 </iterate>
 </elseif>

 <else>
 <log level="'info'">'STAXResult is None'</log>
 </else>

 </if>

</sequence>

In the following example of a process element, the following shell-style command is executed, "grep 'Node Count = ' /tests/cli.out |
awk '{print $8}'" redirecting its standard output and standard error to /tests/awk.out and returning the output. Note the use of the
caret (^) as an escape character for "{" so that it doesn't try to resolve a variable named "print $8".

<process name="'Grep_and_awk_numClustNodes'">
 <location>machName</location>
 <command mode="'shell'">
 "/bin/grep 'Node Count = ' /tests/cli.out | awk '{print $8}'"
 </command>
 <stdout mode="'replace'" >'tests/awk.out'</stdout>
 <stderr mode="'stdout'"/>
 <returnstdout/>
</process>

In the following example of a process element, the command is started in a separate Cygwin shell on Windows, redirecting its
standard output and standard error to D:/temp/copy.out and returning the output (if any).

<process name="'copyFiles'">
 <location>machName</location>
 <command mode="'shell' shell="'D:/Cygwin/bin/bash -c %C'">
 'cp -fr D:/tests/test1/*.java D:/output/test1'
 </command>
 <stdout mode="'replace'" >'D:/temp/copy.out'</stdout>
 <stderr mode="'stdout'"/>

file:///C|/temp/staxug/staxug.html (20 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 <returnstdout/>
</process>

In the following example of a process element, a process-action element is specified. The process-action task will be executed
after the process starts.

<script>
 machName = 'local'
 className = 'com.ibm.staf.service.stax.TestProcess'
 msg = 'Data being sent to the Process Queue after it starts executing'
</script>

<process name="'aProcess'">
 <location>machName</location>
 <command>'java'</command>
 <parms>'className'</command
 <process-action>
 <sequence>
 <stafcmd>
 <location>machName</location>
 <service>'queue'</service>
 <request>'queue handle %s %s' % (STAXProcessHandle, msg)</request>
 </stafcmd>
 </sequence>
 </process-action>
 </process>

stafcmd

The stafcmd element represents a STAF command which will be executed on a specified machine.

After the STAF command has completed, the following variables are set and can be referenced by the job:

● RC - the return code from the STAF command. It is an integer.
● STAFResult - the result from the STAF command. It is a string.

The stafcmd element has one attribute:

● name - This element is optional. It is the name that the STAX Monitor uses to refer to the <stafcmd> element. It defaults to
STAFCommand<number>, where <number> is a unique number for each STAF command executed in a job.

The stafcmd element contains the following elements in the order listed:

● location - It specifies the machine where the STAF command should be run. This element is required.
● service - It specifies the name of the service to which you are submitting a request. This element is required.
● request - It specifies the actual request string that you wish to submit to the service. This element is required.

Usage:

In the following example of a stafcmd element, the STAF respool request is executed on the machine specified by a variable

file:///C|/temp/staxug/staxug.html (21 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

named resPoolServer. The STAF respool request is requesting a machine name from a pool specified by a variable named
clientPool. When the STAF command completes, the if element checks the return code variable set by the STAF command. If the
return code is 0 (aka STAFRC.STAFOk), the value of the STAFResult variable is stored to another variable named machName.

<sequence>

 <script>resPoolServer = "server1.austin.ibm.com"</script>
 <script>clientPool = "clientMachinePool"</script>

 <stafcmd name="'Respool Request Pool'">
 <location>resPoolServer</location>
 <service>'respool'</service>
 <request>'request pool %s' % (clientPool)</request>
 </stafcmd>

 <if expr="RC == STAFRC.STAFOk">
 <script>machName = STAFResult</script>
 <else>
 <raise signal="'NonZeroRCError'"/>
 </else>
 </if>

</sequence>

In the following example of a stafcmd element, a STAF notify request sends notification message "STAX Job ID 6 failed" to Jane
Smith. STAFUtil's wrapData() method is used to turn strings containing spaces into the colon-length-colon form needed for
submitting a STAF Notify request. Note that the java class STAFUtil needs to be imported in order to use its wrapData() method.

<sequence>
 <script>
 NotifyProfile = 'Jane Smith'
 NotifyServer = 'server1'
 Message = 'STAX Job ID %s failed.' % (STAXJobID)

 from com.ibm.staf import STAFUtil

 Request = ('NOTIFY PROFILE %s LEVEL NORMAL MESSAGE %s' % \
 (STAFUtil.wrapData(NotifyProfile), STAFUtil.wrapData(Message)))
 </script>

 <stafcmd>
 <location>NotifyServer</location>
 <service>'notify'</service>
 <request>Request</request>
 </stafcmd>

</sequence>

job

The job element represents a sub-job which will be executed within the parent job.

Notes:

file:///C|/temp/staxug/staxug.html (22 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

● A sub-job will appear as a separate job.
● Terminating a parent job will terminate any sub-jobs as well.
● Holding/releasing a parent job will not hold/release its sub-jobs.

After a sub-job has completed (or if it could not be started) the following variables are set and can be referenced by the job:

● RC - the return code from submitting the request to execute the sub-job. It is an integer.

● STAFResult - the STAF result from submitting the request to execute the sub-job. If the sub-job failed to start successfully,
it contains any error messages from trying the execute the sub-job. It is a string.

● STAXSubJobID - the job ID of the sub-job. If the sub-job was not successfully submitted for execution (e.g. due to a
command parsing error, an XML parsing error, etc.), it is set to 0. It is an integer.

● STAXResult - contains the result returned by the starting function of the sub-job. If nothing is returned (due to a problem
submitting the request to execute the sub-job, or an error running the sub-job, or if an empty <return> element or if no
<return> element is specified in the starting function), STAXResult is set to special Python object None.

The job element has the following optional attributes:

● name - Specifies the name of the sub-job that is used to identify the sub-job. This attribute is equivalent to the JOBNAME
option for a STAX EXECUTE command.

● clearlogs - specifies whether to delete the STAX Job and Job User logs before the sub-job is executed to ensure that only
this sub-job's contents are in the log. This attribute is equivalent to the CLEARLOGS option for a STAX EXECUTE
command. The value must evaluate via Python to one of the following (not case-sensitive):

❍ 'parent' - specifies to use the same value that was specified for the parent job. This is the default.
❍ 'default' - specifies to use the default STAX service setting for "Clear Logs".
❍ 'enabled' - specifies to clear its job logs
❍ 'disabled' - specifies to not clear its job logs
❍ 'otherwise, if it evaluates to a true value, the job logs are cleared; if it evaluates to a false value, the job logs are not

cleared.

● monitor - If it evaluates to true, it specifies that the job should automatically be monitored by the STAX Monitor (when the
current job is already being monitored by the STAX Monitor). Note that "Automatically monitor recommended sub-jobs"
must be selected in the STAX Job Monitor properties in order for it to be used. The default value is 0, a false value.

● logtcelapsedtime - specifies whether to log the elapsed time for testcases in the summary records at the end of a STAX Job
log and in the LIST TESTCASES output for the sub-job. This attribute is equivalent to the LOGTCELAPSEDTIME option
for a STAX EXECUTE command. The value must evaluate via Python to one of the following (not case-sensitive):

❍ 'parent' - specifies to use the same value that was specified for the parent job. This is the default.
❍ 'default' - specifies to use the default STAX service setting for "Log TC Elapsed Time".
❍ 'enabled' - specifies to log the elapsed time for testcases
❍ 'disabled' - specifies to not log the elapsed time for testcases
❍ 'otherwise, if it evaluates to a true value, the elapsed time for testcases is logged; if it evaluates to a false value, the

elapsed time for testcases is not logged.

● logtcnumstarts - specifies whether to log the number of starts for testcases in the summary records at the end of a STAX
Job log and in the LIST TESTCASES output for the sub-job. This attribute is equivalent to the LOGTCNUMSTARTS
option for a STAX EXECUTE command. The value must evaluate via Python to one of the following (not case-sensitive):

❍ 'parent' - specifies to use the same value that was specified for the parent job. This is the default.
❍ 'default' - specifies to use the default STAX service setting for "Log TC Num Starts".

file:///C|/temp/staxug/staxug.html (23 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

❍ 'enabled' - specifies to log the number of starts for testcases
❍ 'disabled' - specifies to not log the number of starts for testcases
❍ 'otherwise, if it evaluates to a true value, the number of starts for testcases is logged; if it evaluates to a false value,

the number of starts for testcases is not logged.

● logtcstartstop - specifies whether to log 'start' and 'stop' level records for testcases in the STAX Job log. This attribute is
equivalent to the LOGTCSTARTSTOP option for a STAX EXECUTE command. The value must evaluate via Python to
one of the following (not case-sensitive):

❍ 'parent' - specifies to use the same value that was specified for the parent job. This is the default.
❍ 'default' - specifies to use the default STAX service setting for "Log TC Start/Stop".
❍ 'enabled' - specifies to log the 'start' and 'stop' records for testcases
❍ 'disabled' - specifies to not log the 'start' and 'stop' records for testcases
❍ 'otherwise, if it evaluates to a true value, the 'start' and 'stop' records for testcases are logged; if it evaluates to a false

value, the 'start' and 'stop' records for testcases are not logged

The job element contains the following elements in the order listed (with some variations). Refer to the "STAX Document Type
Definition (DTD)" section to see the DTD for the job element.

Note that these elements are equivalent to the options allowed for the EXECUTE request (except where noted), so refer to the
"EXECUTE" section for more information.

The job element must contain either a job-file or job-data element as follows:

● job-file - Specifies the fully qualified name of a file containing the XML document for the sub-job to be executed. The job-
file element is equivalent to the FILE option for an EXECUTE request. This element has the following optional attribute:

❍ machine - specifies the name of the machine where the XML document is located. If not specified, it defaults to
Python variable STAXJobXMLMachine. The machine attribute is equivalent to the MACHINE option for an
EXECUTE request.

● job-data - Specifies a string containing the XML document contents for the job to be executed. This element is equivalent
to the DATA option for an EXECUTE request. This element has the following optional attribute:

❍ eval - specifies whether the data is to be evaluated by Python in the parent job. This value must evaluate via Python
to a true or false value. For example, if the job-data value is dynamically generated and assigned to a Python
variable, rather then just containing the literal XML value, you would need to set the eval attribute to true (e.g.
eval="1"). The default is false (eval="0").

The job element has the following optional elements. Each of these optional elements may specify an if attribute. The if attribute
must evaluate via Python to a true or false value. If it does not evaluate to a true value, the element is ignored. The default value for
the if attribute is 1, a true value. Note that in Python, true means any nonzero number or nonempty object; false means not true,
such as a zero number, an empty object, or None. Comparisons and equality tests return 1 or 0 (true or false).

● job-function - specifies the name of the function element to call to start the job, overriding the defaultcall element, if
specified, in the XML document. It must specify the name of a function element specified in the XML document. This
element is equivalent to the FUNCTION option for an EXECUTE request. The value is evaluated via Python to a string.
This element is optional.

● job-function-args - specifies arguments to pass to the function element called to start the job, overriding any arguments for
the defaultcall element, if specified, in the XML document. This element is equivalent to the ARGS option for an
EXECUTE request. This element is optional and has the following optional attribute:

❍ eval - specifies whether the value is to be evaluated by Python in the parent job. The default is false (eval="0").

● job-script - specifies Python code to be executed. This element is equivalent to the SCRIPT option for an EXECUTE

file:///C|/temp/staxug/staxug.html (24 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

request. Multiple job-script elements may be specified for a job. This element has the following optional attribute:
❍ eval - specifies whether the value is to be evaluated by Python in the parent job. The default is false (eval="0").

● job-scriptfile (or job-scriptfiles) - specifies the fully qualified name of a file containing Python code to be executed, or a
list of file names containing Python code to be executed. The value must evaluate via Python to a string or a list of strings.
This element is equivalent to the SCRIPTFILE option for a STAX EXECUTE command.

Specifying only one script file could look like either:

'C:/stax/scriptfiles/scriptfile1.py' or ['C:/stax/scriptfiles/scriptfile1.py']

Specifying a list containing three script files could look like:

['C:/stax/scriptfiles/scriptfile1.py', 'C:/stax/scriptfiles/scriptfile2.py',
'C:/stax/scriptfiles/scriptfile3.py']

The job-scriptfile element has the following optional attribute:
❍ machine - specifies the name of the machine where the script file(s) are located. If not specified, it defaults to

Python variable STAXJobScriptFileMachine. This attribute is equivalent to the SCRIPTFILEMACHINE option for
an EXECUTE request.

● job-action - specifies a task which will be executed after the sub-job has started execution. This task will be executed in
parallel with the sub-job via a new STAX-Thread. The task will be able to use the variable STAXSubJobID to obtain the
sub-job's job ID in order to interact with the sub-job, if desired. If the sub-job completes before the task completes, the sub-
job will remain in a non-complete state until the task completes. If the sub-job cannot start execution, the job-action task is
not executed. This element is optional, but if specified, it must be the last element in the <job> element.

Note: To create a global variable that can be accessed across STAX-Threads, use the STAXGlobal class described in
"Function" section.

Options allowed for the EXECUTE command which are not allowed for the job element are as follows.

● WAIT
● HOLD
● TEST

Usage:

In the following example of a job element, a sub-job defined by an XML file named C:/stax/xml/myJob2.xml (located on the
machine specified by STAXJobXMLMachine) is executed and given a job name of "MyJob". Since the monitor attribute is set to a
true value, if the current job is being monitored by the STAX Monitor, and the "Automatically monitor recommended sub-jobs"
option has been selected in the STAX Job Monitor Properties, a STAX Monitor window will be opened automatically for the sub-
job.

 <job name="'Job 2'" monitor="1">
 <job-file>'C:/stax/xml/myJob2.xml'</job-file>
 </job>

In the following example of a job element, a sub-job defined by an XML file named tests/testB/xml located on machine
myMachine is executed and given a job name of 'Test B'. The job is started by calling function 'Main' and passing this function an
argument list of [1, 'server']. In addition, two scriptfiles are specified as well as a couple of script elements. This sub-job is similar
to the following STAX EXECUTE request:

file:///C|/temp/staxug/staxug.html (25 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 EXECUTE FILE /tests/testB.xml MACHINE myMachine JOBNAME "Test B" CLEARLOGS
 FUNCTION Main ARGS "[1, 'server1']" SCRIPTFILEMACHINE myMachine
 SCRIPTFILE /tests/testB1.py SCRIPTFILE /tests/testB2.py
 SCRIPT "MachineList = ['machA', 'machB'] SCRIPT "maxTime = '1h'"

In addition, a job-action element is run in parallel with the sub-job after the sub-job has been started. In this example, it simply
logs a message containing the job ID for the sub-job being executed.
When the sub-job completes, the return code (RC) set when starting the sub-job is checked.

<job name="'Test B'" clearlogs="'Enabled'">
 <job-file machine="'myMachine'">'/tests/testB.xml'</job-file>
 <job-function>'Main'</job-function>
 <job-function-args>[1, 'server1']</job-function-args>
 <job-scriptfiles machine="'myMachine'">['/tests/testB1.py',
'/tests/testB2.py']</job-scriptfiles>
 <job-script>machineList = ['machA', 'machB']<job-script>
 <job-script>maxTime = '1h'</job-script>
 <job-action>
 <log>'Started sub-job %s' % (STAXSubJobID)</log>
 </job-action>
</job>

<if expr="RC == 0">
 <message>'Sub-job %s completed. Result: %s' % (STAXSubJobID, STAXResult)</message>
 <else>
 <message>'Sub-job could not be started. RC: %s Result: %s' % (RC,
STAFResult)</message>
 </else>
</if>

In the following example of a job element, a sub-job defined by an XML file named C:/tests/Scenario01.xml located on machine
myMachine is executed and given a job name of 'Scenario 01'. The option to clear the job logs is enabled, and all of the testcase
logging options are enabled as well.

 EXECUTE FILE C:/tests/Scenario01.xml MACHINE myMachine JOBNAME "Scenario 01"
 CLEARLOGS Enabled LOGTCELAPSEDTIME Enabled LOGTCNUMSTARTS Enabled
 LOGTCSTARTSTOP Enabled

<job name="'Scenario 01'" clearlogs="'Enabled'">
 logtcelapsedtime="'Enabled'" logtcnumstarts="'Enabled'"
 logtcstartstop="'Enabled'">
 <job-file machine="'myMachine'">'C:/tests/Scenario01.xml'</job-file>
</job>

nop

The nop element indicates that no operation should be performed. This element is typically used in conjunction with the if, elseif,
and else elements.

Usage:

file:///C|/temp/staxug/staxug.html (26 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

In the following example of a nop element, if an expression is true, then use the nop element to do nothing; else perform function
"ErrorRoutine".

<if expr="RC == 0">
 <nop/>
 <else>
 <call function="'ErrorRoutine'"/>
 </else>
</if>

Sequential Execution: sequence

The sequence element may contain any number of STAX elements and executes them serially.

sequence

The sequence element represents a container of STAX elements which will be executed serially, in the order in which the
contained elements are listed in the sequence. A sequence element may contain any number of task elements. You may nest
sequence elements.

Usage:

In the following example of a sequence element, a variable is created. Then the stafcmd element is executed. When the stafcmd
element completes, the process element is executed. When the process element completes, the call element is executed. When the
call element completes, the sequence element is complete.

<sequence>

 <script>server1 = "machine1.test.austin.ibm.com"</script>

 <stafcmd>
 ...
 </stafcmd>

 <process>
 ...
 </process>

 <call function="'VerifyRC'"/>

</sequence>

Parallel Execution: parallel, paralleliterate

The parallel and paralleliterate elements execute tasks in parallel.

file:///C|/temp/staxug/staxug.html (27 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

parallel

The parallel element represents a container of task elements which will be executed in parallel. Each task element it contains will
be executed on a separate STAX-Thread and existing variables are cloned for each thread. The parallel element is considered to be
complete when each of its contained task elements has completed. A parallel element may contain any number of task elements.
You may nest parallel elements.

Note: To create a global variable that can be accessed across STAX-Threads, use the STAXGlobal class described in "Function"
section.

Usage:

In the following example of a parallel element, the stafcmd, process, and call elements are executed at the same time. When all
three tasks are complete, the parallel element is complete and processing will continue on to the next element defined after the
</parallel> element.

<parallel>

 <stafcmd>
 ...
 </stafcmd>

 <process>
 ...
 </process>

 <call function="'VerifyRC'"/>

</parallel>

paralleliterate

The paralleliterate element contains a single task element. The paralleliterate element performs the task for each value in a list.
The iterations of the contained task element are executed in parallel (unlike the iterate element whose tasks are performed
serially). Each iteration will be executed on a separate STAX-Thread and existing variables are cloned for each thread. The
paralleliterate element is considered to be complete when all its iterations of the task element have completed. ZZZ:

Note: To create a global variable that can be accessed across STAX-Threads, use the STAXGlobal class described in "Function"
section.

The paralleliterate element has the following attributes:

● var - is the name of the variable which will contain the current item in the list/tuple being iterated. It is a literal and is
required.

● in - is the list to be iterated. It is evaluated via Python and must evaluate to be a list or tuple. It is required. Note that the list
may be assigned in many ways. Here are some examples of in attribute assignments:

❍ the name of the variable that is a list or tuple: in="machList"
❍ a literal list: in="['machA','machB','machC']"
❍ a literal tuple: in="('testA','testB')"
❍ a slice of a list/tuple: in="machList[1:]"
❍ a concatenation of lists/tuples: in="machList1 + ['machD','machE']"

file:///C|/temp/staxug/staxug.html (28 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

● indexvar - is the name of a variable which will contain the index of the current item in the list/tuple being iterated. It is a
literal and is optional. Note that the index for the first element in the list/tuple is 0.

Usage:

The following example of a paralleliterate element runs ProcessA simultaneously on a group of machines whose names are
contained in a list. The paralleliterate element is not complete until "ProcessA" has completed on all of the machines whose
names are contained in the list.

<script>machList = ['machA','machB','machC','machD']</script>
<paralleliterate var="machName" in="machList">
 <process>
 <location>machName</location>
 <command>'ProcessA'</command>
 </process>
</paralleliterate>

The following example of a paralleliterate element submits a STAF request to the PING service to ping each machine in a list. If
the ping fails, the name of the machine which could not be pinged is added to a list. The STAXGlobal class was used to store this
list so that it can be accessed across STAX-Threads that are running in parallel.

<script>
 machineList = ['machA', 'machB', 'machC']
 gPingFailList = STAXGlobal([])
</script>

<paralleliterate var="machName" in="machineList">
 <sequence>

 <stafcmd>
 <location>machName</location>
 <service>'PING'</service>
 <request>'PING'</request>
 </stafcmd>

 <if expr="RC != 0">
 <script>gPingFailList.append(machName)</script>
 </if>

 </sequence>
</paralleliterate>

<if expr="len(gPingFailList) != 0">
 <message>
 'Could not ping the following machines: %s' % (gPingFailList.get())
 </message>
</if>

Functions: function, call, call-with-list, call-with-map,
defaultcall, return, import

file:///C|/temp/staxug/staxug.html (29 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

The function, call, call-with-list, call-with-map, defaultcall, return, and import elements deal with functions and how they are
invoked.

function

To understand how to use the function element, you need to understand the following concepts:

● <function> creates a function object and assigns it to a name
The function element creates a function object and assigns it to a name. The function name becomes a reference to the
function object. There are really two sides to the function picture: a definition (the function element that creates a function)
and a call (a call element that tells the STAX Job to run the function).

● <return> sends a result object back to the caller
When a function is called, the caller stops until the function finishes its work and returns control to the caller. Functions that
compute a value send it back to the caller with a return element. The return element can send back any sort of object,
including multiple values.

● Scope determines how variables are to be assigned
By default, all variables assigned in a function are global to the job's current STAX-Thread. However, you can assign a
local scope to a function such that all names assigned in a function are local to that function and exist only while the
function runs. Functions defined with a local scope provide a nested namespace, which contains a copy of variables in the
caller's scope and which localizes any new variables created or changes to existing variables.

● STAXGlobal Class provides for truly global variables
An exception to the above scoping rules are variables that are instances of the STAXGlobal class. A STAXGlobal class is a
Python class which STAX provides as a wrapper to provide for the creation of truly global variables, even across STAX-
Threads and when used in functions declared with a local scope. It provides get() and set(value) methods.

A STAXGlobal variable allows you to modify it's value if it is passed into a local-scoped function or if it is shared across
multiple threads. However, creating a STAXGlobal inside a local-scoped function will not cause it to appear once that
function has returned. Any variable created within a local-scoped function will disappear when that function ends.
Normally, any updates to variables disappear as well, but STAXGlobals allow updates to persist, so long as the
STAXGlobal variable was created before the local-scoped function was called.

Note that you will generally want to use a list to define a STAXGlobal variable even if its value is just an integer or a string.
For example, when function Main (see below) is called, the message it displays is (2, 3, 3, 3), not (3, 3, 3, 3) as you may
have thought would be displayed.

 <function name="Main" scope="local">
 <sequence>

 <script>
 ctr = STAXGlobal(2) # Be careful if you don't use a list
 gCtr = STAXGlobal([2]) # Instead, use a list to define
 gCtr2 = STAXGlobal(2) # No list, but set method is used.
 gCtr3 = STAXGlobal(2) # Be careful if you don't use a list
 </script>

 <call function="'TestSTAXGlobal'"/>

 <message>ctr, gCtr[0], gCtr2, gCtr3</message>

file:///C|/temp/staxug/staxug.html (30 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 </sequence>
 </function>

 <function name="TestSTAXGlobal" scope="local">
 <script>
 ctr = ctr + 1 # Now ctr is bound to an integer
 # object, not a STAXGlobal
 gCtr[0] = gCtr[0] + 1 # Still a STAXGlobal
 gCtr2.set(gCtr2 + 1) # Still a STAXGlobal
 gCtr3 += 1 # Still a STAXGlobal
 </script>
 </function>

The function element defines a named task and contains a single task element. A function element may only be defined within
the root stax element.

The first function called when a job is started is determined by the defaultcall element or by the FUNCTION parameter of an
EXECUTE request. Functions are called within a job definition file using the call, call-with-list, or call-with-map elements.

The function element has the following attributes:

● name - is the name of the function. It is required. No two function elements may have the same name. It is a literal. It
cannot contain a variable as it is not evaluated via Python. It must be a proper XML name which means it must start with a
letter, an underscore, or a colon. The next characters may be letters, digits, underscores, hyphens, periods, and colons (but
no whitespace).

● requires - is used with the <import> element and specifies other functions, separated by a space, in the same job that must
be imported along with the specified function. This allows the function's users to only import the function itself, without
having to worry about any other functions it may call. This attribute is optional.

● scope - specifies the scope of the function. It is a literal and, if specified, must be set to either global or local. It is optional
and the default is global.

❍ global - the function uses the same namespace so that the effects of variables defined/changed inside the function are
global (within the same STAX-Thread).

❍ local - the function provides a nested namespace which localizes the variables it uses. All variables assigned in a
function are local to that function and exist only while the function runs. Variables previously defined in other
functions with a global scope are still visible, however, any changes to these variables or new variables created are
not visible to the caller after the function completes, unless the variable is an instance of the STAXGlobal class.
Changes to STAXGlobal variables persist after a function completes.

The function element can also optionally contain the following elements, in the order listed, before the task element:

● function-prolog element - Contains a textual description of the function that can be used when transforming a STAX XML
document to a Function Description document in HTML. This information will be placed before the function argument
table in the Function Description document in HTML. This element replaces the deprecated function-description element.

Note: This information is not used by STAX in any way and is completely ignored. In particular, this value is never passed
to the Python interpreter, and thus, it should be a literal, not a quoted string. If you want to use standard HTML markup
such as <p>, , and in the description, then enclose the text in a CDATA section.

file:///C|/temp/staxug/staxug.html (31 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

● function-epilog element - Contains a textual description of the function that can be used when transforming a STAX XML
document to a Function Description document in HTML. This information will be placed after the function argument table
in the Function Description document in HTML.

Note: This information is not used by STAX in any way and is completely ignored. In particular, this value is never passed
to the Python interpreter, and thus, it should be a literal, not a quoted string. If you want to use standard HTML markup
such as <p>, , and in the description, then enclose the text in a CDATA section.

● One of the following elements can be specified to define formal function arguments. Defining arguments can help prevent
unintended namespace collisions and allows STAX to detect argument validation errors when calling functions at runtime.

❍ function-no-args - is an empty element that specifies that the function does not allow any arguments to be passed to
it.

❍ function-single-arg - contains either a <function-required-arg> or a <function-optional-arg> element.

❍ function-list-args - specifies a list of arguments. This element can contain zero or more <function-required-arg>
elements, followed by zero or more <function-optional-arg elements (but must contain at least one of these
arguments), followed by an optional <function-other-args> element. Note, the order of the arguments is important.
All <function-required-args> must precede all <function-optional-args>, and the <function-other-args> element must
be last (if present).

❍ function-map-args - specifies a map of arguments (recorded as name/value pairs). This element can contain any
combination of one or more <function-required-arg> and <function-optional-arg> elements, followed by an optional
<function-other-args> element. Note that the order of the <function-required-arg> and <function-optional-arg>
elements is not relevant, unless an argument's default value specifies another argument's value. However, the
<function-other-args> element must be specified last (if present).

If more arguments are passed to the function when called than are defined (assuming a <function-other-args> element is not
specified) or if not all required arguments are passed to the function when called, a STAXFunctionArgValidate signal is
raised to indicate the failure and the function is not executed.

The function argument elements are defined as follows:

● function-required-arg - defines an argument that must be passed when calling a function. It may optionally contain a
description for the argument. This element has the following attribute:

❍ name - is the name of the argument as it will appear inside the function. It is a literal and is required.

● function-optional-arg - defines an argument that may optionally be passed when calling a function. It may optionally
contain a description for the argument. This element has the following attributes:

❍ name - is the name of the argument as it will appear inside the function. It is a literal and is required.
❍ default - is the default value for the argument. Its value is evaluated via Python. It is optional, and defaults to the

special Python object None. If an optional argument is not provided when calling a function, its default value is used.

● function-other-args - defines the name of a list (if defined within a <function-list-args> element) or a map (if defined
within a <function-map-args> element) which will contain any additional arguments passed when calling a function. If
additional arguments are not provided when calling a function, its value is either an empty list or an empty map, depending
on whether it was defined within a <function-list-args> element or a <function-map-args> element, respectively. It may
optionally contain a description for the argument. The <function-other-args> element has the following attribute:

❍ name - is the name of the argument list or map as it will appear inside the function. It is a literal and is required.

A function that does not define its arguments is implicitly defined as:

file:///C|/temp/staxug/staxug.html (32 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

<function-single-arg>
 <function-optional-arg name="STAXArg" default="None"/>
<function-single-arg>

Note that the function argument elements (function-required-arg, function-optional-arg, and function-other-args) can contain a
description of the argument. This information, along with the values of the function-prolog element (or the deprecated function-
description element) and the function-epilog element, can be used in conjunction with an XSLT stylesheet to generate a nicely
formatted HTML file documentating functions and their associated arguments specified in a STAX job. Refer to the "Generating
STAX Function Documentation using a XSL Stylesheet" section for more information.

Usage:

Goal: Define a simple function containing a sequence element (which can then contain any number of other elements).

<function name="FunctionA">
 <sequence>
 ...
 </sequence>
</function>

Goal: Define a function which you intend to import into other STAX XML job files. The requires attribute defines the two
additional functions it requires so that they will be automatically imported as well when FunctionB is imported.

<function name="FunctionB" requires="FunctionC FunctionD">
 <sequence>
 ...
 <call function="'FunctionC'"/>
 ...
 <call function="'FunctionD'"/>
 ...
 </sequence>
</function>

Goal: Illustrate the use of local function scope and the STAXGlobal class. Note that only changes to globalVar (which is an
instance of the STAXGlobal class) are visible after function Bar completes. Also, all existing variables are visible inside functions
with "local" scope. Thus, variables localVar and globalVar are visible inside function Bar, even though function Bar has "local"
scope and had not defined them. The following messages are displayed in the STAX Monitor when this example is run:

Before Bar: localVar=[1, 2], globalVar=[1, 2]
After Bar: localVar=[1, 2], globalVar=[1, 2, 3]

<stax>

 <script>
 localVar = [1, 2]
 globalVar = STAXGlobal([1, 2])
 </script>

 <defaultcall function="Main"/>

 <function name="Main" scope="local">

file:///C|/temp/staxug/staxug.html (33 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 <sequence>

 <message>
 'Before Bar: localVar=%s, globalVar=%s" % (localVar, globalVar)
 </message>

 <call function="'Bar'"/>

 <message>
 'After Bar: localVar=%s, globalVar=%s' % (localVar, globalVar)
 </message>

 </sequence>

 </function>

 <function name="Bar" scope="local">

 <script>
 localVar.append(3)
 globalVar.append(3)
 </script>

 </function>

</stax>

Goal: Illustrate the specification of a function which does not allow any arguments to be passed to it. If any arguments are passed
to it when called, a STAXFunctionArgValidate signal is raised and the function is not run.

 <function name="NoArgsFunction">
 <function-no-args/>

 <sequence>
 ...
 </sequence>

 </function>

Goal: Illustrate the specification of a function which requires one argument, duration, to be passed to it. If zero or more than one
argument is passed to it when called, a STAXFunctionArgValidate signal is raised and the function is not run.

 <function name="OneRequiredArgFunction" scope="local">

 <function-single-arg>
 <function-required-arg name="duration"/>
 </function-single-arg>

 <timer duration="duration">
 <loop>
 ...
 </loop>
 </timer>

 </function>

file:///C|/temp/staxug/staxug.html (34 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 This function could be called in any of the following ways with the same result:

 <call function="'OneRequiredArgFunction'">'24h'</call>

 <call-with-list function="'OneRequiredArgFunction'">
 <call-list-arg>'24h'</call-list-arg>
 </call-with-list>

Goal: Illustrate the specification of a function which requires two map arguments (returnCode and result) and has one optional
argument (msg). If the two required arguments are not passed to it when called, a STAXFunctionArgValidate signal is raised and
the function is not run. A function prolog element is provided to describe what this function does and descriptions of the arguments
passed to the function are also provided.

 <function name="Check-STAFCmd-RC" scope="local">

 <function-prolog>
 Checks if a STAFCmd was successful and updates testcase status
 </function-prolog>

 <function-map-args>

 <function-required-arg name="returnCode">
 Return Code from a STAF Command
 </function-required-arg>

 <function-required-arg name="result">
 Result from a STAF Command
 </function-required-arg>

 <function-optional-arg name="msg" default="''">
 Message to display if an error occurs
 </function-optional-arg>

 </function-map-args>

 <if expr="RC == 0">
 <tcstatus result="'pass'"/>
 <else>
 <tcstatus result="'fail'">
 '%s; RC=%s, Result=%s' % (msg, returnCode, result)
 </tcstatus>
 </else>
 </if>

 </function>

 This function could be called in any of the following ways with the same result:

 <call function="'Check-STAFCmd-RC'">
 { 'returnCode': RC, 'result': STAFResult, 'msg': 'This is the error message' }
 </call>

 <call-with-map function="'Check-STAFCmd-RC'">
 <call-map-arg name="'result'">STAFResult</call-map-arg>
 <call-map-arg name="'returnCode'">RC</call-map-arg>
 <call-map-arg name="'msg'">'This is the error message'<call-map-arg>

file:///C|/temp/staxug/staxug.html (35 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 </call-with-map>

Goal: Illustrate the specification of a function which requires a list argument (machName) and may have any number of additional
arguments which will be stored in a list called testList. This example also shows the use of a STAXGlobal variable which is
updated across STAX-Threads.

<function name="RunTests" scope="local">

 <function-list-args>
 <function-required-arg name="machName"/>
 <function-other-args name="testList"/>
 </function-list-args>

 <sequence>

 <script>
 testsRun = STAXGlobal([0]) # Number of tests run
 </script>

 <paralleliterate var="testName" in="testList">

 <sequence>

 <process>
 <location>machName</location>
 <command mode="'shell'">testName</command>
 </process>

 <script>testsRun[0] += 1</script>

 </sequence>

 </paralleliterate>

 <message>'Ran %s tests' % testsRun[0]</message>

 </sequence>

 </function>

 This function could be called in any of the following ways with the same result:

 <call function="'RunTests'">
 'local', 'ping machineA', 'dir C:\ > C:\out'
 </call>

 <call function="'RunTests'">
 ['local', 'ping machineA', 'dir C:\ > C:\out']
 </call>

 <call-with-list function="'RunTests'">
 <call-list-arg>'local'</call-list-arg>
 <call-list-arg>'ping machineA'</call-list-arg>
 <call-list-arg>'dir C:\ > C:\out'<call-list-arg>
 </call-with-list>

file:///C|/temp/staxug/staxug.html (36 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

Goal: Illustrate the specification of a function that includes a complete desription of the function using the function-prolog and
function-epilog elements. These elements utilize a CDATA section so that the text can include standard HTML markup so that
when transformed via an XSLT processor, the text is easily readable. Note this function is actually provided in the sample
STAXUtil.xml file provides in the STAX zip/tar file.

 <function name="STAXUtilLogAndMsg" scope="local">

 <function-prolog>
 <![CDATA[
 <p>
 Logs a message and sends the message to the STAX Monitor.
 It's a shortcut for specifying the <message> and <log> elements
 for the same message.
 </p>
]]>
 </function-prolog>

 <function-epilog>
 <![CDATA[
 <h4>Returns:</h4>
 <p>Nothing. That is, STAXResult = None.</p>
 <h4>Example:</h4>
 <pre>
 <call function="'STAXUtilLogAndMsg'">'Here is my message'</call></pre>
]]>
 </function-epilog>

 <function-list-args>

 <function-required-arg name="message">
 The message you want to log in the STAX Job User log and to send to
 the STAX Monitor.
 </function-required-arg>

 <function-optional-arg name="level" default="'info'">
 The level of the message to be logged in the STAX Job User log.
 </function-optional-arg>

 </function-list-args>

 <sequence>

 <message>message</message>

 <log level="level">message</log>

 </sequence>

 </function>

call

The call element specifies the name of a function element to be executed. When a call element is executed during the job
execution, the function referred to is executed. The call element has the following required attribute:

file:///C|/temp/staxug/staxug.html (37 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

● function - is the name of the function to call. Its value must evaluate via Python to a string. There must be a function
element that exists whose name exactly matches, including case, the evaluated string.

Optionally, arguments may be passed when calling a function. The arguments are evaluated via Python in the caller's namespace. If
no argument data is specified, then special Python object None is passed to the function. Any kind of argument data can be passed
to functions using the <call> element and all of the types of function arguments (<function-no-args>, <function-single-arg>,
<function-list-args>, or <function-map-args>) may be specified via this mechanism.

Usage:

Goal: Call a function named 'FunctionA', passing no arguments.

 <call function="'FunctionA'"/>

Goal: Serially call each function (passing no arguments) whose name is in a list.

 <iterate var="funcName" in="['FuncA','FuncB','FuncC','FuncD']">
 <call function="funcName"/>
 </iterate>

Goal: Call a function which expects one argument.

 <call function="'FunctionWithOneArg'">'Hi'</call>

Goal: Call a function which expects a list of three arguments.

 <call function="'FunctionWithThreeArgs'">
 5, 'This is a message', ['test1', 'test2']
 </call>
or
 <call function="'FunctionWithThreeArgs'">
 [5, 'This is a message', ['test1', 'test2']]
 </call>

Goal: Call a function which expects a map of two required values named "testList" and "machineList":

 <call function="'Foo'">
 {
 'testList' : ['test1', 'test2'],
 'machineList' : ['machine1', 'machine2']
 }
 </call>

call-with-list

The call-with-list element specifies the name of a function element to be executed. When a call-with-list element is executed
during the job execution, the function referred to is executed.The call-with-list element has the following required attribute:

● function - is the name of the function to call. Its value must evaluate via Python to a string. There must be a function
element that exists whose name exactly matches, including case, the evaluated string.

file:///C|/temp/staxug/staxug.html (38 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

The call-with-list element can contain any number of call-list-arg elements. Each call-list-arg element contains a value for an
argument which is evaluated via Python in the caller's namespace and will be passed to the function in the form of a list.

Usage:

Goal: Call a function named 'FunctionWithArgs' passing it three arguments in the form of a list.

 <call-with-list function="'FunctionWithArgs'">
 <call-list-arg>5</call-list-arg>
 <call-list-arg>'This is a message'</call-list-arg>
 <call-list-arg>['test1', 'test2']</call-list-arg>
 </call-with-list>

Note that this is equivalent to the following examples which use the call element instead:

 <call function="'FunctionWithArgs'">
 5, 'This is a message', ['test1', 'test2']
 </call>

 <call function="'FunctionWithArgs'">
 [5, 'This is a message', ['test1', 'test2']]
 </call>

call-with-map

The call-with-map element specifies the name of a function element to be executed. When a call-with-map element is executed
during the job execution, the function referred to is executed. The call-with-map element has the following required attribute:

● function - is the name of the function to call. Its value must evaluate via Python to a string. There must be a function
element that exists whose name exactly matches, including case, the evaluated string.

The call-with-map element can contain any number of call-map-arg elements. Each call-map-arg element has a required name
attribute and contains an argument value. Both the name attribute and the argument value are evaluated via Python in the caller's
namespace. The arguments are passed to the function in the form of a map of name/value pairs (also known as a dictionary in
Python).

Usage:

Goal: Call a function named 'FunctionWithArgs' passing it three arguments in the form of a map (Python dictionary).

 <call-with-map function="'FunctionWithArgs'">
 <call-map-arg name="'size'">5</call-map-arg>
 <call-map-arg name="'msg'">'This is a message'</call-map-arg>
 <call-map-arg name="'testList'">['test1', 'test2']</call-map-arg>
 </call-with-map>

Note that this is equivalent to the following example which uses the call element instead:

 <call function="'FunctionWithArgs'">
 {'size' : 5, 'msg' : 'This is a message', 'testList' : ['test1', 'test2'] }
 </call>

file:///C|/temp/staxug/staxug.html (39 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

defaultcall

The defaultcall element specifies the name of the function to call to start the job if no FUNCTION parameter is specified when the
job is started using an EXECUTE request. The defaultcall element has the following required attribute:

● function - is the name of the function to call. It is a literal and so it cannot contain a variable as it is not evaluated via
Python. There must be a function element that exists whose name exactly matches (including case).

Optionally, arguments may be passed via the defaultcall element. The arguments are evaluated via Python. If no argument data is
specified, then special Python object None is passed to the function. Any kind of argument data can be passed to functions using
the defaultcall element and all of the types of function arguments (function-no-args, function-single-arg, function-list-args, or
function-map-args) may be specified via this mechanism.

A defaultcall element may only be defined within the root stax element, but it is not required. If a defaultcall element is not
specified, a FUNCTION parameter on the STAX EXECUTE request must be specified.

Usage:

Goal: Call FunctionA by default to start the STAX job. No arguments are passed to FunctionA.

<stax>

 <defaultcall function="FunctionA"/>

 <function name="FunctionA">
 ...
 </function>
 ...

</stax>

Goal: Call FunctionA by default to start the STAX job. Pass a list of 2 arguments (duration and testList) to FunctionA.

<stax>

 <defaultcall function="FunctionA">['24h', ['machA', 'machB']]</defaultcall>

 <function name="FunctionA">
 <function-list-args>
 <function-required-arg name="duration"/>
 <function-optional-arg name="testList" default="['local']"/>
 </function-list-args>
 ...
 </function>
 ...

</stax>

return

The return element ends the function call and sends a result back to the caller. The return element is optional; if it's not present, a

file:///C|/temp/staxug/staxug.html (40 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

function exits when control flow falls off the end of the function body.

After the call of a function has completed, the STAXResult variable contains the result sent back from the call. It can be set to any
type of object. For example, an integer, a list, a string, etc. This can be especially useful when the function called is defined with a
local scope.

If no return element is specified within a function, or if no value is specified for the result object, STAXResult is set to the special
Python None object. If an error occurred calling the function (e.g. invalid arguments, Python Evaluation error), STAXResult is set
to a result object called STAXFunctionError.

Note that because the return sends back any sort of object, it can return multiple values, by packaging them as a tuple. Thus, call by
reference can be simulated by returning tuples and assigning back to the original argument names in the caller. See the last
example in the Usage section.

Usage:

Goal: Return control to the caller with STAXResult set to RC (e.g. an integer value set by a process or STAF command).

 <return>RC</return>

Goal: Return control to the caller with STAXResult set to None.

 <return/>

Goal: Return control to the caller with STAXResult set to a list. The caller can access the RC by specifying STAXResult[0] and
the message by specifying STAXResult[1].

 <return>[RC, 'A descriptive message']</return>

Goal: Simulate call by reference by returning new values in a tuple and assigning the results to the caller's names. After the call, A
= 3 and B = ['test1', 'test2', 'test3']

<function name="FunctionPassByReference" scope="local">

 <function-list-args>
 <function-required-arg name="x"/>
 <function-required-arg name="y"/>
 </function-list-args>

 <sequence>
 <script>
 x = x + 2
 y.append('test3')
 </script>
 <return>x, y</return>
 </sequence>

</function>

The above function is called from another function as follows:

<script>
 A = 1

file:///C|/temp/staxug/staxug.html (41 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 B = ['test1', 'test2']
</script>

<call function="'FunctionPassByReference'">A, B</call>

<script>
 A, B = STAXResult
</script>

import

The import element specifies a set of functions to be imported from another STAX XML job file. The import element has the
following attributes:

● machine - is the name of the machine where the XML file is located, and is required. Its value is evaluated via Python.
● file - is the fully-qualified path to the XML job file from which the function(s) will be imported, and is required. Its value is

evaluated via Python.
● mode - specifies what happens when an error occurs during a function import. It is optional. Its value must evaluate via

Python to one of the following:
❍ 'error' - specifies that a signal will be raised if an error occurs. This is the default.
❍ 'ignore' - specifies that no signal will be raised if an error occurs. However, STAXResult[0] will contain the error.

The import element contains the following optional elements:

● import-include - It specifies a list of the the functions to import from the job file.
● import-exclude - It specifies a list of functions which will not be imported from the job file.

If <import-include> is not present, then all functions will be imported (bound by any exclude list). If <import-exclude> is not
present, then no functions will be excluded.

The <import-include> and <import-exclude> elements support grep matching.

After executing an import element, STAXResult will be set to a list containing:

● STAXResult[0]: Either None or a list containing a STAXImportError object and a text string with details about the error.
● STAXResult[1]: A list of the successfully imported functions that were requested to be imported.
● STAXResult[2]: A list of the successfully imported functions that were required by other functions.
● STAXResult[3]: A list of the functions that were requested to be imported but already existed (so they were not imported).
● STAXResult[4]: A list of the functions that were required by other functions but already existed (so they were not

imported).
● STAXResult[5]: A list of the functions that were not requested to be imported and were not required by other functions.
● STAXResult[6]: A list of functions requested to be imported that were not found.

If an error occurs while executing an import element, a STAXImportError signal will be raised if its mode is 'error'. When a
STAXImportError signal is raised, the variable STAXSignalData will be set to a list containing an error type and an error
description. The possible error types for STAXImportError are:

● STAXNoResponseFromMachine - the machine specified could not be contacted
● STAXFileCopyError - an error occurred while copying the xml file
● STAXXMLParseError - an XML parse error occurred while parsing the imported XML file

If you override the default Signal Handler for STAXImportError, you can access the error type in this manner:

file:///C|/temp/staxug/staxug.html (42 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 <if expr="STAXSignalData[0] is STAXNoResponseFromMachine">

Usage:

The import element may be specified anywhere except in the root <stax> element. This allows it to be executed at runtime,
allowing Python expressions to be used in the element and enabling dynamic importing of functions. The element acts like any
other element and is not executed until runtime.

Note that after an import element is executed, any other function can then call the imported function. So, for example, if functionA
calls functionB and then functionC, and functionB imports functionX, functionC can call functionX without doing another import.
If you have many functions to import, you can also create a function which does all of the imports and is the first function which is
called in your job.

The following example of an import element imports all functions from file c:\util\library.xml, which is located on machine
Server1A.

 <import machine="'Server1A'" file="'c:/util/library.xml'"/>

The following example of an import element only imports functions FunctionA and FunctionB.

 <import machine="'Server1A'" file="'c:/util/library.xml'">
 <import-include>'FunctionA', 'FunctionB'</import-include>
 </import>

The following example of an import element imports all functions except those that start with "FunctionA".

 <import machine="'Server1A'" file="'c:/util/library.xml'">
 <import-exclude>'FunctionA.*'</import-exclude>
 </import>

The following example of an import element imports all functions that start with "MyFuncs" but do not start with
"MyFuncsWin32".

 <import machine="'Server1A'" file="'/usr/local/util/library.xml'">
 <import-include>'MyFuncs.*'</import-include>
 <import-exclude>'MyFuncsWin32.*'</import-exclude>
 </import>

Here's is a more complete snippet of a STAX job that shows an import element that is called by the job's starting function so that
the imported functions can then be called throughout the job, from any function. This import element imports all of the functions
provided in STAXUtil.xml. Refer to the "STAX Utility Functions" section for more information about common functions like
STAXUtilLogAndMsg that are provided in the STAXUtil.xml file.

<stax>

 <defaultcall function="main"/>

 <script>
 # ImportMachine should be set to the machine where STAXUtil.xml resides
 # (e.g. 'local' if the file resides on the STAX service machine).
 # ImportDirectory should be set to the directory which contains STAXUtil.xml.

file:///C|/temp/staxug/staxug.html (43 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 ImportMachine = 'local'
 ImportDirectory = '{STAF/Config/STAFRoot}/services/libraries'
 ImportFile1 = '%s/STAXUtil.xml' % (ImportDirectory)
 </script>

 <function name="main">
 <sequence>

 <import machine="ImportMachine" file="ImportFile1"/>

 <call function="'STAXUtilLogAndMsg'">
 'This is the beginning of the job'
 </call>

 <call function="'FunctionA'"/>
 <call function="'FunctionB'"/>

 </sequence>
 </function>

 <function name="FunctionA">
 <sequence>

 <call function="'STAXUtilLogAndMsg'">
 'This is the beginning of FunctionA'
 </call>

 <!-- Add elements as needed -->

 </sequence>
 </function>

 <function name="FunctionB">
 <sequence>

 <call function="'STAXUtilLogAndMsg'">
 'This is the beginning of FunctionB'
 </call>

 <!-- Add elements as needed -->

 </sequence>
 </function>

</stax>

Loops: loop, iterate, break, continue

The loop, iterate, break, and continue elements deal with repeatedly executing a task.

loop

The loop element contains a single task element which may be executed a specified number of times, allowing specification of an

file:///C|/temp/staxug/staxug.html (44 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

upper and lower bound with an increment value and where the index counter is available to the contained task element. In addition,
specification of a while and/or until expression is allowed. If no constraint attributes (e.g. to, until, or while) are specified for the
loop element, then it loops "forever".

The loop element has the following attributes:

● var - is the name of the variable which will contain the loop index variable. It is optional.
● from - is the starting value of the loop index variable. It defaults to 1 if not specified.
● to - is the maximum value of the loop index variable. It is optional.
● by - is the increment value for the loop index variable. It defaults to 1 if not specified.
● while - is an expression that must evaluate to a boolean value and is performed at the top of each loop. If it evaluates to

false, it breaks out of the loop. It is optional.
● until - is an expression that must evaluate to a boolean value and is performed at the bottom of each loop. If it evaluates to

true, it breaks out of the loop. It is optional.

Usage:

The following example of a loop element executes a process five times.

<loop from="1" to="5">
 <process>
 <location>'machA.austin.ibm.com'</location>
 <command>'P3.exe'</command>
 </process>
</loop>

The following example of a loop element serially calls each function in a list named funcList until the return code set in a called
function is not 0.

<script>funcList = ['Func1','Func2','Func3','Func4']</script>
<loop var="funcIndex" from="0" to="3" until="RC != 0">
 <call function="funcList[funcIndex]"/>
</loop>

The following example of a loop element loops "forever". The job will not end until the block containing the continuous loop is
terminated. Function 'LongFunction' runs in parallel with a block that runs function 'ShortFunction' in a forever loop. When
function 'LongFunction' completes, the block containing the "forever" loop is terminated so that the job may complete.

<parallel>

 <sequence>
 <call function="'LongFunction'"/>
 <terminate block name="'main.LoopForever'"/>
 </sequence>

 <block name="'LoopForever'">
 <loop>
 <call function="'ShortFunction'"/>
 </loop>
 </block>

</parallel>

file:///C|/temp/staxug/staxug.html (45 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

iterate

The iterate element contains a single task element. The iterate element performs the task for each value in a list. The iterations of
the contained task element are executed serially (unlike the paralleliterate element whose tasks are performed in parallel). The
iterate element has the following attributes:

● var - is the name of the variable which will contain the current item in the list/tuple being iterated. It is a literal and is
required.

● in - is the list to be iterated. It is evaluated via Python and must evaluate to be a list or tuple. It is required. Here are some
examples of in attribute assignments:

❍ the name of the variable that is a list or tuple: in="machList"
❍ a literal list: in="['machA','machB','machC']"
❍ a literal tuple: in="('testA','testB')"
❍ a slice of a list/tuple: in="machList[1:]"
❍ a concatenation of lists/tuples: in="machList1 + ['machD','machE']"

● indexvar - is the name of the variable which will contain the index of the current item in the list/tuple being iterated. It is a
literal and is optional. Note that the index for the first element in the list/tuple is 0.

Usage:

The following example of an iterate element runs a STAF RESPOOL RELEASE request to release each machine name in a list.

<script>allocMachList = ['machA','machB','machC']</script>
<iterate var="machName" in="allocMachList">
 <stafcmd>
 <location>'machine1.austin.ibm.com'</location>
 <service>'RESPOOL'</service>
 <request>'RELEASE POOL ClientMachPool ENTRY %s' % machName</request>
 </stafcmd>
</iterate>

The following example of an iterate element runs each process whose name is in a list on a machine. In addition, the iterate
element is nested within a paralleliterate element such that this occurs simultaneously on all machines in the machine list.

<paralleliterate var="machName" in="['machA','machB','machC']">
 <iterate var="procName" in="['proc1','proc2','proc3','proc4']">
 <process>
 <location>machName</location>
 <command>procName</command>
 </process>
 </iterate>
</paralleliterate>

break

The break element may be used to break out of a loop or iterate element.

Usage:

The following example of a break element breaks out of an iterate element when a non-zero return code is encountered. So if the
list contains "ProcessA", "ProcessB", and "ProcessC" and ProcessA returns 0 but then ProcessB returns a non-zero RC, ProcessC

file:///C|/temp/staxug/staxug.html (46 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

will not be executed.

<iterate var="processName" in="processList">
 <sequence>
 <process>
 <location>'machineA'</location>
 <command>processName</command>
 </process>
 <if expr="RC != 0">
 <break/>
 </if>
 </sequence>
</iterate>

The following example of a break element breaks out of a loop element when a non-zero return code is encountered after running
ShortTestProcess. However, since the loop contains a parallel element, when the break occurs, the other task running in parallel,
LongTestProcess, will be killed in order to exit the loop.

<script>className = 'com.ibm.staf.service.stax.TestProcess'</script>

<function name="LoopParallelBreakTest">

 <loop var="i" from="0" by="1" to="3">

 <sequence>

 <message>'Beginning loop #%s' % i</message>

 <parallel>

 <sequence>

 <process name="'ShortTestProcess'">
 <location>machName</location>
 <command>'java'</command>
 <parms>'%s 2 2 %s' % (className, i-1)</parms>
 </process>

 <if expr="RC != 0">
 <sequence>
 <message>' ShortTestProcess failed with RC=%s' % RC</message>
 <message>' Breaking out of loop #%s' % i</message>
 <break/>
 </sequence>
 <else>
 <message>' ShortTestProcess completed'</message>
 </else>
 </if>

 </sequence>

 <sequence>
 <process name="'LongTestProcess'">
 <location>machName</location>
 <command>'java'</command>

file:///C|/temp/staxug/staxug.html (47 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 <parms>'%s 4 2 0' % className</parms>
 </process>
 <message>' TestProcess2 completed'</message>
 </sequence>

 </parallel>

 <message>'Completed loop #%s' % i</message>

 </sequence>

 </loop>

</function>

Note that the TestProcess class is provided as part of STAX. Its last input parameter is the return code that the process will return.
The "Messages" output that you would see if you were monitoring a job running this function using the STAX Job Monitor would
be:

Beginning loop #0
 ShortTestProcess completed
 LongTestProcess completed
Completed loop #0
Beginning loop #1
 ShortTestProcess completed
 LongTestProcess completed
Completed loop #1
Beginning loop #2
 ShortTestProcess failed with RC=1
 Breaking out of loop #2

continue

The continue element may be used to continue to the top of a loop or iterate element.

Usage:

The following example of a continue element continues to the top of the loop when a non-zero return code is encountered so that
ProcessB is not executed if ProcessA fails on a loop iteration.

<loop var="i" from="1" to="10">
 <sequence>
 <process>
 <location>'machA.austin.ibm.com'</location>
 <command>'cmd.exe'</command>
 <parms>'ProcessA.exe'</parms>
 </process>
 <if expr="RC != 0">
 <continue/>
 </if>
 <process>
 <location>'machA.austin.ibm.com'</location>

file:///C|/temp/staxug/staxug.html (48 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 <command>'cmd.exe'</command>
 <parms>'ProcessB.exe'</parms>
 </process>
 </sequence>
</loop>

Conditional: if / elseif / else

The if element is a conditional that can control the logic and flow of the job.

if / elseif / else

The if element specifies a conditional. It allows you to specify a task to execute if an expression is evaluated to be true. It allows
optional elseif elements and an optional else element to be performed if the expression is evaluated to be false. The if, else, and
elseif elements may contain a single task element.

STAX uses Python as the expression evaluator engine.

Usage:

The following example of an if and else element checks the value of a variable named index to see if it has a zero remainder (even
number), and if so, calls function Ogre1 and, otherwise, calls function Ogre2.

<if expr="(index % 2) == 0">
 <call function="'Ogre1'"/>
 <else>
 <call function="'Ogre2'"/>
 </else>
</if>

The following example uses a Python random number generator to determine which of four functions to randomly call:

<sequence>

 <script>from random import random</script>
 <script>r=random()*100</script>

 <if expr="r > 75">
 <call function="'Function1'"/>
 <elseif expr="r > 50">
 <call function="'Function2'"/>
 </elseif>
 <elseif expr="r > 25">
 <call function="'Function3'"/>
 </elseif>
 <else>
 <call function="'Function4'"/>
 </else>
 </if>

file:///C|/temp/staxug/staxug.html (49 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

</sequence>

Wrappers: block, testcase / tcstatus, timer

The block, testcase, and timer elements act as a wrapper around a single task element and provide additional functionality to the
task element.

The tcstatus element records the status of a testcase and must be contained within a testcase wrapper.

block

The block element is a wrapper which defines a task for which execution control is provided. The block element contains a single
task element. It may be used in conjunction with the hold, release, and terminate elements and the STAX Service HOLD,
RELEASE, and TERMINATE requests to define a task block that may be held, released, or terminated. Only blocks that are
currently in use (e.g. running or held) can have actions (e.g. hold, release, or terminate) performed on them.

Blocks may be nested. A block named 'main' exists that wraps everything in the job. Block names must be unique within a given
block scope. For nested blocks, the block name will be recorded in the hierarchical form of ParentBlockName.ChildBlockName in
the STAX logs and queries (so don't use periods, ".", in your block names). The hierarchical block name must be unique with the
parent block's scope.

Usage:

This example shows a block which contains a process. The block's name is the value of a variable named machName. The block
element provides execution control (the ability to hold, release, terminate) for the process element contained in the block element.

<block name="machName">
 <process>
 <location>machName</location>
 <command>'P4.exe'</command>
 </process>
</block>

Using the following example of the block element, here are some comments about holding and terminating the blocks:

● You can hold Block2, then hold Block1, and then release Block2, and then release Block1.
● If you hold Block1, you cannot hold Block2 since it's already blocked from holding Block1.
● If you terminate Block2, then process P4 would be terminated and process P5 would start running.
● If you terminate Block1, then all the processes currently running in it would be terminated and process P3 would start

running.

<sequence>

 <process>
 <location>machName</location>
 <command>'P1.exe'</command>
 </process>

file:///C|/temp/staxug/staxug.html (50 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 <block name="'Block1'">

 <parallel>

 <process>
 <location>machName</location>
 <command>'P2.exe'</command>
 </process>

 <sequence>

 <block name="'Block2'">

 <process>
 <location>machName</location>
 <command>'P4.exe'</command>
 </process>

 </block>

 <process>
 <location>machName</location>
 <command>'P5.exe'</command>
 </process>

 </sequence>

 </parallel>

 </block>

 <process>
 <location>machName</location>
 <command>'P3.exe'</command>
 </process>

</sequence>

testcase and tcstatus

The testcase element is a wrapper which defines a testcase and contains a single task element for which testcase status is recorded.
The testcase element is used in conjunction with the tcstatus element to increment testcase pass/fail counters.

A testcase element has the following attributes:

● name - the name of the testcase. It is required and its value must evaluate via Python to a string.
● mode - the mode of the testcase. This attribute defines whether information about the testcase should be reported even if no

tcstatus elements have been encountered. It is optional and its value must evaluate via Python to a string. The default value
is "default", and indicates that information about the testcase should only be reported if a tcstatus element has been
encountered. If the attribute's value is "strict", then information about the testcase will be reported even if no tcstatus
elements have been encountered (in this case, pass and fail for the testcase will be 0).

A tcstatus element has the following attribute:

file:///C|/temp/staxug/staxug.html (51 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

● result - indicates whether the current test passed or failed. It is required and its value must evaluate via Python to either
'pass' or 'fail'.

You may also specify additional information about the testcase status in the tcstatus element. It is optional and its value must
evaluate via Python to a string.

You may nest testcase elements. For nested testcases, the testcase name will be recorded in the form of
ParentTestcase.ChildTestcase in the STAX logs and queries (so don't use periods, ".", in your testcase names).

Testcase status information can be displayed in the "Testcase Information" section of the STAX Monitor GUI. A summary of the
number of passes and fails for each testcase as well as any additional information specified about the status of a testcase is logged
in the STAX Job Log.

Usage:

In the following example of a testcase element, the testcase consists of a process that is run 10 times. Each time the process runs
successfully, the test status pass counter is incremented, otherwise the test status fail counter is incremented and additional
information about the error is recorded (and automatically sent to the STAX Monitor and logged in the STAX job log).

<testcase name="'TestA'">
 <loop var="i" from="1" to="10">
 <sequence>
 <process>
 ...
 </process>
 <if expr="RC == 0">
 <tcstatus result="'pass'"/>
 <else>
 <tcstatus result="'fail'">'RC=%s on loop %s' % (RC, i)</tcstatus>
 </else>
 </if>
 <sequence>
 </loop>
</testcase>

In the following example of a testcase element, mode 'strict' is used so that an entry for each testcase will be logged, even if no
<tcstatus> elements were executed. For example, an entry for testcase 'Test1' is logged in the STAX job log and sent to the STAX
Monitor with 0 passes and 0 fails even if no <tcstatus> elements were executed within it.

 <function name="Main" scope="local">
 <testcase name="'Test1'" mode="'strict'">
 <paralleliterate var="machine" in="machList">
 <testcase name="machine" mode="'strict'">
 <sequence>
 <process>
 <location>machine</location>
 <command>'test1.exe'</command>
 </process>
 <if expr="RC == 0">
 <tcstatus result="'pass'"/>
 <else>
 <tcstatus result="'fail'">'Failed with RC=%s' % RC</tcstatus>
 </else>

file:///C|/temp/staxug/staxug.html (52 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 </if>
 </sequence>
 </testcase>
 </paralleliterate>
 </testcase>
 </function>

timer

The timer element is a wrapper which defines a task for which time control is provided. The timer element contains a single task
element and runs the task for a specified duration, stopping the task at the end of the specified duration (if the task is still running).

The timer element has the following attribute:

● duration - specifies the maximum length of time to run the task. It is required. The time may be expressed in milliseconds,
seconds, minutes, hours, days, weeks, or years. For example:

❍ duration="50" specifies 50 milliseconds.
❍ duration="90s" specifies 90 seconds.
❍ duration="5m" specifies 5 minutes.
❍ duration="36h" specifies 36 hours.
❍ duration="3d" specifies 3 days.
❍ duration="1w" specifies 1 week.
❍ duration="1y" specifies 1 year.

Also, the following variable is set by the STAX execution engine upon completion of a timer element:

● RC - specifies the timer's return code
❍ Set to 1 if the task is still running at the end of the specified duration.
❍ Set to 0 if the task ended before the specified duration.
❍ Set to -1 if the task could not begin, possibly due to an invalid value for the duration attribute.

Usage:

The following example of a timer element simultaneously calls function P3 in a continuous loop on a list of machines. A loop is
not complete until function P3 has been run on all of the machines. After 24 hours, the test is stopped. The test is successful if it
did not end before 24 hours.

<testcase name="'TestP3'">

 <sequence>

 <script>timerDuration = '24h'</script>

 <timer duration="timerDuration">
 <loop>
 <paralleliterate var="machName" in="MachList">
 <call function="'P3'"/>
 </paralleliterate>
 </loop>
 </timer>

 <if expr="RC == 1">

file:///C|/temp/staxug/staxug.html (53 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 <tcstatus result="'pass'">
 'Timer ran for %s' % timerDuration
 </tcstatus>
 <else>
 <tcstatus result="'fail'">
 'Timer did not run for %s. RC=%s' % (timerDuration, RC)
 </tcstatus>
 </else>
 </if>

 </sequence>

</testcase>

The following example of a timer element is like the previous example, but it also uses Python to calculate the elapsed time that
the timer element ran so that it can record the elapsed time in the testcase status message.

<testcase name="'TimerTest'">

 <sequence>

 <script>
 timerDuration = '45m'
 import time
 starttime = time.time(); # record starting time
 </script>

 <timer duration="timerDuration">
 <loop>
 <paralleliterate var="machName" in="MachList">
 <call function="'aProcess'"/>
 </paralleliterate>
 </loop>
 </timer>

 <script>
 stoptime = time.time() # record ending time
 elapsedSecs = stoptime - starttime # yields time elapsed in seconds
 </script>

 <if expr="RC == 1">
 <tcstatus result="'pass'">
 'Timer ran for %s seconds' % elapsedSecs
 </tcstatus>
 <else>
 <tcstatus result="'fail'">
 'Timer only ran for %s seconds. RC=%s' % (elapsedSecs, RC)
 </tcstatus>
 </else>
 </if>

 </sequence>

</testcase>

file:///C|/temp/staxug/staxug.html (54 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

Directives: hold, release, terminate

The hold, release, and terminate elements specify execution control during the execution of a job.

A signal is raised if you try to hold, release, or terminate a block that doesn't exist. If you try to hold a block that isn't RUNNING
or release a block that isn't HELD, the request is silently ignored.

hold

The hold element specifies to hold a block in the STAX job. To hold the entire job, specify the "main" block. If no block is
specified, the default is the current block.

release

The release element specifies to release a block in the STAX job. If no block is specified, the default is the current block.

terminate

The terminate element specifies to terminate a block in the STAX job. To terminate the entire job, specify the "main" block. If no
block is specified, the default is the current block.

Usage:

In the following example of the hold and terminate elements:

● If process P1 ended with a non-zero return code, then the job would be terminated.
● If process P2 ended with a non-zero return code, then Block1 would be held.
● If process P4 ended with a non-zero return code, then Block1 would be terminated and processing would continue at

process P5.

<sequence>

 <process>
 <location>machName</location>
 <command>'P1.exe'</command>
 </process>

 <if expr="RC != 0">
 <terminate block="'main'"/>
 </if>

 <block name="'Block1'">

 <parallel>

 <sequence>

 <process>

file:///C|/temp/staxug/staxug.html (55 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 <location>machName</location>
 <command>'P2.exe'</command>
 </process>

 <if expr="RC != 0">
 <hold/>
 </if>

 </sequence>

 <sequence>

 <process>
 <location>machName</location>
 <command>'P4.exe'</command>
 </process>

 <if expr="RC != 0">
 <terminate block="'main.Block1'"/>
 </if>

 </sequence>

 </parallel>

 </block>

 <process>
 <location>machName</location>
 <command>'P5.exe'</command>
 </process>

</sequence>

Exceptions: try / catch, throw, rethrow

The try / catch, throw, and rethrow elements deal with the processing of STAX exceptions. STAX exceptions alter the flow control
of the job (unlike signals).

try / catch

The try element allows you to perform a task and to catch exceptions that are thrown by the task. A try element contains a single
task element and one or more catch elements. You may nest try elements.

A catch element performs a task when the specified exception is caught. A catch element has the following attributes:

● exception - is the name of the exception that the catch element handles. All exceptions that are a sub-type of this exception
are caught as well. For example, a sub-type of an exception named 'STAXException' is 'STAXException.SubType1'. You
may specify '...' to indicate that all exceptions are to be caught by this catch block. This attribute is required and its value
must evaluate via Python to a string.

● var - is the name of a variable containing any additional information provided when the exception was thrown. It is a literal.

file:///C|/temp/staxug/staxug.html (56 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

This attribute is optional.
● typevar - is the name of a variable containing the specific type of exception thrown. It is a literal. This attribute is optional.

The first catch block that can handle the exception will be performed. For example, if a 'STAXException.SubType1' exception is
thrown and there is a <catch exception="'STAXException'"> element and a <catch exception="'STAXException.SubType1'">
element, the catch element which is listed first will handle the exception. However, note that if the <catch
exception="'STAXException'"> element is listed first, the <catch exception="'STAXException.SubType1'"> block will never
handle any exceptions since it is a sub-type of 'STAXException'.

If an exception is thrown but there's no catch block for it, then the job logs an error and terminates.

Usage:

The following example of the try/catch elements shows a try block containing a sequence of tasks to perform. If an exception is
thrown, the catch block for the exception thrown is run and then processing will continue by executing the element following the
end of the try block. If a 'Timeout.ServerStart' or 'Timeout.ClientStart' exception is thrown, the catch block for exception 'Timeout'
can handle these exceptions because they are sub-types of exception 'Timeout'.

<try>

 <sequence>
 <call function="'CheckServerAvailability'"/>
 <if expr="RC != 0">
 <throw exception="'ServerNotAvailable'"/>
 </if>
 <call function="'StartServers'"/>
 <if expr="RC != 0">
 <throw exception="'Timeout.ServerStart'">'Server %s' % machine</throw>
 </if>
 <call function="'StartClients'"/>
 <if expr="RC != 0">
 <throw exception="'Timeout.ClientStart'"/>'Client %s' % machine</throw>
 </if>
 </sequence>

 <catch exception="'ServerNotAvailable'">
 <log>'Handler: ServerNotAvailable'</log>
 </catch>

 <catch exception="'Timeout'" typevar="exceptionType" var="eInfo">
 <log>'Handler: Timeout, eType: %s, eInfo: %s' % (exceptionType, eInfo)</log>
 </catch>

</try>

throw

The throw element specifies an exception to throw. You may also optional specify additional information when the exception is
thrown.

A throw element has the following attribute:

● exception - is the name of the exception being thrown. It must evaluate via Python to a string value. This attribute is

file:///C|/temp/staxug/staxug.html (57 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

required.

Usage:

The following example of the throw element shows a "NotAvailableException" exception being thrown.

<throw exception="'NotAvailableException'"/>

The following example shows a "TimerFailedException" exception being thrown with additional information provided about how
long the timer ran.

<throw exception="'TimerFailedException'">
 'Only ran for %s seconds' % elapsedTime
</throw>

rethrow

The rethrow element specifies to rethrow the exception up the chain to a higher level try/catch block. The rethrow element should
only be used in a catch block.

A rethrow element has no attributes.

Usage:

The following is an example of the rethrow element.

<rethrow/>

The following example of the try/catch, throw, and rethrow elements shows three nested try blocks.

If the return code after function 'CheckServerAvailability' is called is not zero, exception 'STAXException.ServerNotAvailable' is
thrown. There is no catch block for this exception in this try block so the exception is thrown up the chain to its parent try block
which has a catch block for this exception since it is a sub-type of exception 'STAXException'. The catch block throws exception
'OtherException' which is handled by its parent try block. The following messages are sent to the Job Monitor:

 Handler: STAXException eType: STAXException.ServerNotAvailable, eInfo: Server %s
 Handler: ..., eType: OtherException, eInfo: None

If the return code after function 'StartServers' is called is not zero, exception 'STAXException.Timeout.StartingServer' is thrown.
There is a catch block that can handle this exception since it is a sub-type of exception 'STAXException.Timeout'. The catch block
rethrows the exception up the chain to its parent try block. It has a catch block that can handle this exception since it is a sub-type
of exception 'STAXException'. The catch block throw exception 'OtherException' which is handled by its parent try block. The
following messages are sent to the Job Monitor:

 Servers are available
 Handler: STAXException.Timeout, eType: STAXException.Timeout.StartingServer, eInfo:
Server %s
 Handler: STAXException, eType: STAXException.Timeout.StartingServer, eInfo: Server
%s

file:///C|/temp/staxug/staxug.html (58 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 Handler: ..., eType: OtherException, eInfo: None

If the return code after function 'StartClients' is called is not zero, exception 'STAXException.Timeout.StartingClient' is thrown.
There is a catch block that can handle this exception. The following messages are sent to the Job Monitor:

 Servers are available
 Servers are started
 Handler: STAXException.Timeout.StartingClient, eType:
STAXException.Timeout.StartingClient, eInfo: Client %s

If no exceptions were thrown (all the return codes were 0), the following messages are sent to the Job Monitor:

 Servers are available
 Servers are started
 Clients are started
 Ran the Test

<try>

 <try>

 <try>

 <sequence>

 <call function="'CheckServerAvailability'"/>
 <if expr="RC != 0">
 <throw exception="'STAXException.ServerNotAvailable'">
 'Server %s' % machine
 </throw>
 </if>

 <message>'Servers are available'</message>

 <call function="'StartServers'"/>
 <if expr="RC != 0">
 <throw exception="'STAXException.Timeout.StartingServer'">
 'Server %s' % machine
 </throw>
 </if>

 <message>'Servers are started'</message>

 <call function="'StartClients'"/>
 <if expr="RC != 0">
 <throw exception="'STAXException.Timeout.StartingClient'">
 'Client %s' % machine
 </throw>
 </if>

 <message>'Clients are started'</message>

 <call function="'RunTest'"/>
 <message>'Ran the test'</message>

file:///C|/temp/staxug/staxug.html (59 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 </sequence>

 <catch exception="'STAXException.Timeout.StartingClient'"
 typevar="eType" var="eInfo">
 <sequence>
 <message>
 'Handler: STAXException.Timeout.StartingClient, ' + \
 'eType: %s, eInfo: %s' % (eType, eInfo)
 </message>
 </sequence>
 </catch>

 <catch exception="'STAXException.Timeout'" typevar="eType" var="eInfo">
 <sequence>
 <message>
 'Handler: STAXException.Timeout, ' + \
 'eType: %s, eInfo: %s' % (eType, eInfo)
 </message>
 <rethrow/>
 </sequence>
 </catch>

 </try>

 <catch exception="'STAXException'" typevar="eType" var="eInfo">
 <sequence>
 <message>
 "Handler: STAXException, eType: %s, eInfo: %s" % (eType, eInfo)
 </message>
 <throw exception="'OtherException'"/>
 </sequence>
 </catch>

 </try>

 <catch exception="'...'" typevar="eType" var="eInfo">
 <message>
 "Handler: ..., eType: %s, eInfo: %s" % (eType, eInfo)
 </message>
 </catch>

</try>

Signals: raise, signalhandler

The raise and signalhandler elements deal with the raising and handling of STAX signals. Unlike STAX exceptions, STAX signals,
by themselves, do not alter execution flow. Signal handlers provide asynchronous error handling while executing a STAX job. The
STAX execution engine may also raise signals for errors such as if a variable is referenced which does not exist or if a function is
called that does not exist.

The following table contains the names of signals that may be raised by the STAX execution engine, the conditions in which
STAX raises these signals, and a description of the default signal handlers provided by STAX.

file:///C|/temp/staxug/staxug.html (60 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

Signal Name Raised When: Default Signal Handler

STAXProcessStartError

A specified process cannot be
successfully started. The process is
bypassed. Information about the
process that could not be started is
provided in a variable named
STAXProcessStartErrorMsg.

Sends a message that includes the
variable named
STAXProcessStartErrorMsg to the
STAX Monitor and logs a message
in the STAX Job Log with level
'error'.

STAXProcessStartTimeout

A specified process was not started
within the ProcessTimeout parameter
value for the STAX service.
Information about the process that
could not be started within the timeout
value is provided in a variable named
STAXProcessStartTimeoutMsg.

Sends a message that includes the
variable named
STAXStartProcessTimeoutMsg to
the STAX Monitor and logs a
message in the STAX Job Log with
level 'error'.

STAXCommandStartError

A specified STAF Command request
cannot be successfully started. The
<stafcmd> request is bypassed.
Information about the command that
could not be started is provided in a
variable named
STAXCommandStartErrorMsg.

Sends a message that includes the
variable named
STAXCommandStartErrorMsg to
the STAX Monitor, logs a message
in the STAX Job Log with level
'error', and terminates the job.

STAXPythonEvaluationError

Python cannot successfully evaluate a
value, expression, or statement(s). The
element is bypassed. Information about
the element which could not be
successfully evaluated by Python is
provided in a variable named
STAXPythonEvalMsg.

Sends a message that includes the
variable named
STAXPythonEvalMsg to the STAX
Monitor, logs a message in the
STAX Job Log with level 'error',
and terminates the job.

STAXFunctionDoesNotExist

A function is called that does not exist.
The call request is bypassed.
Information about the call request is
provided in a variable named
STAXFunctionDoesNotExistMsg.

Sends a message that includes the
variable named
STAXFunctionDoesNotExistMsg
to the STAX Monitor, logs a
message in the STAX Job Log with
level 'error', and terminates the job.

STAXFunctionArgValidate

A function is called with arguments
that are not valid. The call request is
bypassed. Information about the call
request is provided in a variable named
STAXFunctionArgValidateMsg.

Sends a message that includes the
variable named
STAXFunctionArgValidateMsg to
the STAX Monitor, logs a message
in the STAX Job Log with level
'error', and terminates the job.

STAXBlockDoesNotExist

A block name referenced by a <hold>,
<release>, or <terminate> element
does not exist. The
hold/release/terminate block request is
bypassed. Information about the
hold/release/terminate block request is
provided in a variable named
STAXBlockDoesNotExistMsg.

Sends a message that includes the
variable named
STAXBlockDoesNotExistMsg to
the STAX Monitor and logs a
message in the STAX Job Log with
level 'error'.

file:///C|/temp/staxug/staxug.html (61 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

STAXInvalidBlockName

A block with the name specified by the
<block> element already exists. The
<block> request is bypassed.
Information about the invalid <block>
request is provided in a variable named
STAXInvalidBlockNameMsg. Note
that this situation can easily occur if
you have a block executing in parallel
on multiple machines and you specify
a literal block name, like
name="'BlockA'", instead of one like
name="'BlockA_%s' % machName" to
uniquely identify each block.

Sends a message that includes the
variable named
STAXInvalidBlockNameMsg to
the STAX Monitor, logs a message
in the STAX Job Log with level
'error', and terminates the job.

STAXLogError

A <log> element is encountered but
the STAF Log request failed. The
<log> element is bypassed.
Information about the invalid <log>
element is provided in a STAX
variable named STAXLogMsg.

Sends a message that includes the
variable named STAXLogMsg to
the STAX Monitor and logs a
message in the STAX Job Log with
level 'error'.

STAXTestcaseMissingError

A <tcstatus> element is encountered
but there is no <testcase> wrapper
element containing it. The <tcstatus>
element is bypassed. Information about
the invalid <tcstatus> element is
provided in a STAX variable named
STAXMissingTestcaseMsg.

Sends a message that includes the
variable named
STAXTestcaseMissingMsg to the
STAX Monitor, and logs a message
in the STAX Job Log with level
'error'.

STAXInvalidTcStatusResult

A <tcstatus> element is encountered
with an invalid result value (not 'pass'
or 'fail'). The <tcstatus> element is
bypassed. Information about the
invalid <tcstatus> element is provided
in a STAX variable named
STAXInvalidTcStatusResultMsg.

Sends a message that includes the
variable named
STAXInvalidTcStatusResultMsg to
the STAX Monitor, and logs a
message in the STAX Job Log with
level 'error'.

STAXNoSuchSignalHandler

A <raise> element specifies a signal
for which there is no signal handler.
The <raise> element is bypassed.
Information about the invalid <raise>
element is provided in a STAX
variable named
STAXNoSuchSignalHandlerMsg.

Sends a message that includes the
variable named
STAXNoSuchSignalHandlerMsg to
the STAX Monitor, and logs a
message in the STAX Job Log with
level 'error'.

STAXInvalidTimerValue

A <timer> element specifies an invalid
value for its duration attribute. The
element is bypassed. Information about
the invalid <timer> element is
provided in a variable named
STAXInvalidTimerValueMsg.

Sends a message that includes the
variable named
STAXInvalidTimerValueMsg to
the STAX Monitor, logs a message
in the STAX Job Log with level
'error', and terminates the job.

file:///C|/temp/staxug/staxug.html (62 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

STAXEmptyList

An <iterate> or <paralleliterate>
element specifies a list which is empty
or set to None. Information about the
element which specified the empty list
is provided in a STAX variable named
STAXEmptyListMsg.

Sends a message that includes the
variable named
STAXEmptyListMsg to the STAX
Monitor, and logs a message in the
STAX Job Log with level 'error'.

STAXImportError

An error occurred while processing an
<import> element. Information about
the error is provided in a STAX
variable named
STAXImportErrorMsg. When a
STAXImportError signal is raised, the
variable STAXSignalData will be set
to a list containing an error type and an
error description.

Sends a message that includes the
variable named
STAXImportErrorMsg to the
STAX Monitor, logs a message in
the STAX Job Log with level
'error', and terminates the job.

STAXInvalidTestcaseMode

An invalid mode attribute was
specified for a <testcase> element. The
valid values for the attribute are
'default' and 'strict'.

Sends a message that includes the
variable named
STAXInvalidTestcaseModeMsg to
the STAX Monitor and logs a
message in the STAX Job Log with
level 'error'.

You may override a default signalhandler by providing your own signalhandler.

raise

The raise element may be used to raise a specified signal. Signals may also be raised by the STAX execution engine. A signal
interrupts the STAX job's normal flow of execution and allows a signal handler to take control. A signal handler is a function that
is called when the corresponding signal occurs. When the signal handler returns, the STAX job continues to execute from the point
in the job following where the signal was raised, assuming the signal handler did not terminate the job or block. If a signal handler
is not provided for a generated signal, a STAXNoSuchSignalHandler signal is raised.

The raise element has a required attribute named signal which specifies the name of the signal being raised.

Usage:

The following example of the raise element raises a signal named 'NonZeroRCError' when a non-zero return code is encountered.

<function name="Valid-if-RC-0">
 <if expr="RC != 0">
 <raise signal="'NonZeroRCError'"/>
 </if>
</function>

signalhandler

The signalhandler element defines how to handle a specified signal. Signalhandlers are inherited from parent threads. The
signalhandler element contains a single task element. The signalhandler element has a required attribute named signal which is
the name of the signal that the signalhandler element handles. A signalhandler element can be contained in the stax root element
as well as anywhere where a task element can be.

file:///C|/temp/staxug/staxug.html (63 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

Usage:

The following example of the signalhandler element handles signals named 'NonZeroRCError' by setting the testcase status to fail
and terminating the job.

<signalhandler signal="'NonZeroRCError'">
 <sequence>
 <tcstatus result="'fail'">'RC=%s' % RC</tcstatus>
 <terminate block="'main'"/>
 </sequence>
</signalhander>

Logging / Messages: log, message

The log and message elements deal with logging a message to a STAX job user log and sending a message to the STAX Monitor.

log

The log element may be used to log a message in the STAX job user log. The log value and log level must evaluate via Python to a
string value.

The log element has the following optional attributes:

● level - is the logging level of the message to be logged. It must evaluate via Python to be one of the STAF logging levels
('fatal', 'error', 'warning', 'info', 'trace', 'trace2', 'trace3', 'debug', 'debug2', 'debug3', 'start', 'stop', 'pass', 'fail', 'status', 'user1',
'user2', 'user3', 'user4', 'user5', 'user6', 'user7', or 'user8'). It defaults to 'info'.

● if - is an expression that is evaluated via Python to a boolean value. If it evaluates to false, the message is not logged. It
defaults to true ('1').

Refer to the "STAX Logging" section for more information on how to query a STAX job user log.

Usage:

The following example of the log element logs a message of level 'info' (the default log level) in the STAX job user log after
successfully running a STAF command If the STAF command fails, it logs a message of level 'warning' in the STAX job user log.

<sequence>

 <stafcmd>
 <location>machName</location>
 <service>"misc"</service>
 <request>"version"</request>
 </stafcmd>

 <if expr="RC == STAFRC.Ok">
 <log>'Machine %s is running STAF Version %s' % (machName,STAFResult)</log>
 <else>
 <log level="'warning'">'RC=%s on %s' % (RC, machName)</log>

file:///C|/temp/staxug/staxug.html (64 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 </else>
 </if>

</sequence>

Note that instead of using the "if" element, could use the "if" attribute of the log element as follows:

 <log if="RC == STAFRC.Ok">'Machine %s is running STAF Version %s' % (machName,
STAFResult)</log>
 <log if="RC != STAFRC.Ok" level="'warning'">'RC=%s on %s' % (RC, machName)</log>

message

The message element specifies a message which will be sent to the STAX Monitor and displayed via its GUI. The message value
must evaluate via Python to a string value.

The message element has the following optional attribute:

● if - is an expression that is evaluated via Python to a boolean value. If it evaluates to false, the message is not sent. It
defaults to true ('1').

Usage:

The following example of the message element makes a message available to the STAX Monitor which displays it in the
"Messages" section of the GUI.

<function name="Valid-if-RC-0">
 <if expr="RC != 0">
 <message>'RC=%s on machine %s' % (RC, machName)</message>
 </if>
</function>

Note that instead of using the "if" element, could use the "if" attribute of the message element as follows:

 <message if="RC ! 0">'RC=%s on machine %s' % (RC, machName)</message>

System Requirements
A STAX Service machine is where the STAX Service is installed. The STAX Service machine has the following software and
hardware requirements:

Software Requirements

● STAF Version 2.6.0 or higher (but less than Version 3.0.0) must be installed on the STAX Service machine.
● The STAX Service code.

file:///C|/temp/staxug/staxug.html (65 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

● The STAX Service is written in Java and requires Java 1.4 or higher.
● The STAX Monitor requires Java 1.3.0 or higher.
● A file system that supports long file names.
● Any operating system that is supported by STAF. See the STAF User's Guide for a list of supported operating systems.

Hardware Requirements

● Pentium 300 Mhz CPU minimum
● 64M memory minimum

Installation and Configuration
Following is a diagram showing a typical configuration when using STAX. Usually, you install a single server-type system to be
the STAX service machine. It has STAF installed with the STAX and Event services configured. This system must be up and
running STAF while STAX jobs are running on it.

You can request STAX jobs to be executed and monitor them using the STAX Monitor (or via command-line requests). This can
be done from any machine, such as your office or home machine, as long as it is running STAF and has TCP/IP network
capabilities such that it can communicate with the STAX service machine. Note that the same job can be monitored from multiple
systems simultaneously.

The execution machines are the machines where you want tests to be run. Any number of execution machines can be involved in a
single STAX job. A STAX job generally consists of processes and STAF commands that make up various testcases that run on any
number of execution machines. The <location> element, which is part of each <process> and <stafcmd> element in a job, specifies
the execution machine where the process or STAF command is run. You can pass additional information (e.g. a list of execution
machines and/or tests) when submitting a STAX job for execution using SCRIPT/SCRIPTFILE parameters or by passing
arguments to the starting function for the job.

file:///C|/temp/staxug/staxug.html (66 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

STAX Service Machine

1. Install Java 1.4 or later. The STAX Service is written in Java, so you need to install a JVM (e.g. Sun or IBM) on the STAX
Service machine. IBM employees must download the Sun or IBM JVM from the internal JIM site. Non-IBM users can

file:///C|/temp/staxug/staxug.html (67 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

download from http://java.sun.com. We recommend that you install the most recent fixpack for the JVM you want to use, so
that you will have all of the latest fixes.

Verify that the PATH environment variable contains the Java bin directory (e.g. C:\j2sdk1.4.2_05\bin). You can type "java -
version" to check the version of Java that's in the PATH. Or you can override the version of Java that you want the STAX
service to use when registering the STAX service via the OPTION JVM=<Java Path> option when creating a new JVM
(e.g. OPTION JVM=C:\j2sdk1.4.2_05\bin\java).

2. Install STAF Version 2.6.0 or higher (but less than Version 3.0.0) by following the installation instructions in the STAF
documentation.

Verify that the CLASSPATH environment variable contains the JSTAF.jar file (e.g. C:\STAF\bin\JSTAF.jar or
/usr/local/staf/lib/JSTAF.jar). JSTAF.jar contains the STAF Java APIs to communicate with STAF from Java programs and
is required to register STAF services written in Java.

3. Install the STAX service:

a. Extract the STAX tar/zip file into a local directory.
■ On Windows, unzip the STAXV1511.zip file into a local directory (e.g. C:\STAF\services).
■ On Unix, untar the STAXV1511.tar file into a local directory (e.g. /usr/local/staf/services).

b. Verify that the local directory where you extracted the STAX zip/tar file now includes the following files:
■ STAX.jar
■ STAXMon.jar
■ STAFEvent.jar file.

4. Update the STAF configuration file as follows:

● Register the STAX service.
● Register the Event service if the Event Service is also installed on the STAX Service system and you plan to use the

STAX Monitor.
● Register the Log service if you want STAX log files to be created by the STAX service. Note that the default STAF

configuration file includes a SERVICELOADER configuration line for STAF's default service loader which can
dynamically load the Log Service.

● Increase the default setting for MAXQUEUESIZE if you plan to run the STAX Monitor on this system.

Following is the syntax for the lines which should be present in the STAF configuration file:

SERVICELOADER LIBRARY STAFDSLS

SERVICE <Name> LIBRARY JSTAF EXECUTE <STAX Jar File Name>
 [OPTION <Name[=Value]>]...
 [PARMS <"> [EVENTSERVICEMACHINE <EventMachine>]
 [EVENTSERVICENAME <EventName>]
 [NUMTHREADS <NumThreads>]
 [PROCESSTIMEOUT <ProcessTimeout>]
 [CLEARLOGS <Enabled | Disabled>]
 [LOGTCELAPSEDTIME <Enabled | Disabled>]
 [LOGTCNUMSTARTS <Enabled | Disabled>]
 [LOGTCSTARTSTOP <Enabled | Disabled>]
 [EXTENSIONXMLFILE <Extension XML File> |
 EXTENSIONFILE <Extension Text File>]
 [EXTENSION <Extension Jar File>...

file:///C|/temp/staxug/staxug.html (68 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 <">]

SERVICE <Name> LIBRARY JSTAF EXECUTE <Event Jar File Name>
 [OPTION <Name[=Value]>]...

SET MAXQUEUESIZE 10000

where:

❍ <Name> is the name by which the service will be known on this machine. The name of the STAX Service should
generally be STAX and the name of the Event Service should generally be Event.

❍ <STAX Jar File Name> is the fully qualified name of the STAX.jar file. On Windows systems, this might be
C:\STAF\services\STAX.jar. On Unix systems, this might be /usr/local/staf/services/STAX.jar.

❍ <Event Jar File Name> is the fully qualified name of the STAFEvent.jar file. On Windows systems, this might
be C:\STAF\services\STAFEvent.jar. On Unix systems, this might be /usr/local/staf/services/STAFEvent.jar

❍ OPTION specifes a configuration option that will be passed on to the JSTAF Java service proxy library. This is
typically used by service proxy libraries to further control the interface to the actual service implementation. You
may specify multiple OPTIONs for a given service. See the STAF User's Guide for more information on options for
the JSTAF Java service proxy library.

Note that if you run long, resource-intensive STAX jobs, you may need to increase the minimum and maximum
JVM heap sizes for the STAX Service to the maximum that the system can support based on its physical memory
and the memory usage required by other applications running on the system.

❍ <EventMachine> is the name of the Event service machine. This option will resolve STAF variables.

❍ <EventName> is the name by which the Event service will be known to the STAX service. It defaults to "Event" (not
case-sensitive) if not specified. This option will resolve STAF variables.

❍ <NumThreads> is the number of physical threads that the STAX Service will use. It must be an integer value of 2 or
greater. It defaults to 5 if not specified. This option will resolve STAF variables.

❍ <ProcessTimeout> is the number of milliseconds that the STAX service will wait for processes to start. It must be
an integer value of 1000 (1 second) or greater. It's value should be at least the value of the CONNECTTIMEOUT
operational parameter set for STAF on the STAX service machine. The default is 60000 milliseconds (1 minute). If a
process does not start within the timeout value, a STAXProcessStartTimeout signal will be raised and the job will
continue.

❍ CLEARLOGS specifies whether the STAX Job and Job User logs should be deleted before a job is executed. Since
STAX job numbers are reused, a specific job log may contain the results for more than one job. Valid values are
"Enabled" and "Disabled", not case-sensitive. If you specify "Enabled", the log files will be deleted before a job is
executed, in order to ensure that only one job's contents are in the logs. If you specify "Disabled", the job logs will
not be deleted. The default is "Disabled". This option will resolve STAF variables.

❍ LOGTCELAPSEDTIME specifies whether to log the elapsed time in the summary "Status" record for each testcase
written at the end of the STAX Job log and when you list testcases. Valid values are "Enabled" and "Disabled", not
case-sensitive. If you specify "Enabled", the elapsed time will be logged. If you specify "Disabled", the elapsed time
will not be logged. The default is "Enabled". This option will resolve STAF variables.

file:///C|/temp/staxug/staxug.html (69 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

❍ LOGTCNUMSTARTS specifies whether to log the number of starts in the summary "Status" record for each testcase
written at the end of the STAX Job log and when you list testcases. Valid values are "Enabled" and "Disabled", not
case-sensitive. If you specify "Enabled", the number of starts will be logged. If you specify "Disabled", the number
of starts will not be logged. The default is "Enabled". This option will resolve STAF variables.

❍ LOGTCSTARTSTOP specifies whether to log a "Start" record each time a testcase begins and to log a "Stop" record
each time a testcase ends in the STAX Job log. Valid values are "Enabled" and "Disabled", not case-sensitive. If you
specify "Enabled", the start/stop testcase records will be logged. If you specify "Disabled", the start/stop testcase
records will not be logged. The default is "Disabled". This option will resolve STAF variables.

❍ EXTENSIONXMLFILE specifies the fully-qualified name of an XML file that contains the names of the extension jar
files to be registered. Refer to the "STAX Extensions" section for more information.

❍ EXTENSION specifies the fully-qualified name of an extension jar file. Refer to the "STAX Extensions" section for
more information.

❍ EXTENSIONFILE specifies the fully-qualified name of a text file that contains the names of the extension jar files to
be registered. Refer to the "STAX Extensions" section for more information.

Notes:

1. Each SERVICE configuration statement must be entered as one continuous line (or you can use a backslash (\) to
specify line continuation.

2. If the Event Service machine is the same as the STAX service machine and "Event" is the name used when
registering the Event Service, then you don't have to specify the EVENTSERVICEMACHINE or the EVENTSERVICENAME
parameters. The <EventName> defaults to "Event" if it is not specified and the <EventMachine> defaults to the
STAX service machine name if it is not specified.

3. The STAX Service requires version 1.3.1 or later (but less then 3.0.0) of the Event service.

4. The CLEARSLOGS, LOGTCELAPSEDTIME, LOGTCNUMSTARTS, and LOGTCSTARTSTOP parameters may be changed
usingthe SET command, Refer to the "SET" section for more information.

Examples of Service Configuration Lines for the STAX Service System:

● If the STAX and Event services are installed on the same system, the SERVICE configuration lines in the STAF
configuration file might look like the following:

Windows (assuming the STAX.jar and STAFEvent.jar files are in C:\STAF\services):

SERVICE STAX LIBRARY JSTAF EXECUTE C:\STAF\services\STAX.jar
SERVICE EVENT LIBRARY JSTAF EXECUTE C:\STAF\services\STAFEvent.jar

Unix (assuming the STAX.jar and STAFEvent.jar files are in /usr/local/staf/services):

SERVICE STAX LIBRARY JSTAF EXECUTE /usr/local/staf/services/STAX.jar
SERVICE EVENT LIBRARY JSTAF EXECUTE /usr/local/staf/services/STAFEvent.jar

● If the Event service is installed on a different system (e.g. machA.austin.ibm.com) and is named "Event", the SERVICE
configuration lines in the STAF configuration file might look like the following:

file:///C|/temp/staxug/staxug.html (70 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

SERVICE STAX LIBRARY JSTAF EXECUTE C:\STAF\services\STAX.jar \
 PARMS "EVENTSERVICEMACHINE machA.austin.ibm.com"

Note that since each SERVICE configuration statement must be entered as one continuous line, a backslash (\) can be used at
the end of the prior line to indicate you're continuing on the next line.

● If you want the STAX service to use 8 physical threads and you want to enable start/stop testcase logging and the STAX
and Event services are installed on the same system, the SERVICE configuration lines in the STAF configuration file might
look like the following:

SERVICE STAX LIBRARY JSTAF EXECUTE C:\STAF\services\STAX.jar \
 PARMS "NUMTHREADS 8 LOGTCSTARTSTOP Enabled"
SERVICE EVENT LIBRARY JSTAF EXECUTE C:\STAF\services\STAFEvent.jar

● If you want the STAX service to run in a separate JVM named STAX and you want the JVM to use 256M as the maximum
memory allocation size, and the STAX and Event services are installed on the same system, the SERVICE configuration
lines in the STAF configuration file might look like the following:

SERVICE STAX LIBRARY JSTAF EXECUTE C:\STAF\services\STAX.jar \
 OPTION JVMName=STAX OPTION J2=-Xmx256m
SERVICE EVENT LIBRARY JSTAF EXECUTE C:\STAF\services\STAFEvent.jar

Note that the -X Java options are non-standard and can vary by Java version. Use the "java -X" command to display the non-
standard options available for the Java you are using.

● If you want the STAX and Event services to run in a separate JVM named STAX using the Java executable located in
C:\j2sdk1.4.2_05\bin and you want the JVM to use 512M as the maximum memory allocation size, and the STAX and
Event services are installed on the same system, the SERVICE configuration lines in the STAF configuration file might
look like the following:

SERVICE STAX LIBRARY JSTAF EXECUTE C:\STAF\services\STAX.jar \
 OPTION JVMName=STAX OPTION JVM=C:\j2sdk1.4.2_05\bin\java OPTION J2=-
Xmx512m
SERVICE EVENT LIBRARY JSTAF EXECUTE C:\STAF\services\STAFEvent.jar OPTION
JVMName=STAX

Requesting Machine

Requesting machines are the ones that submit requests (e.g. EXECUTE, QUERY) to the STAX Service. Refer to the "Request
Syntax" section for request details.

1. Install STAF by following the installation instructions in the STAF documentation.

2. A requesting machine must give a trust level of at least 4 to the STAX Service machine. The syntax for the TRUST LEVEL

line that must be in the STAF configuration file on each requesting machine is:

TRUST LEVEL 4 MACHINE <STAX Service machine>

file:///C|/temp/staxug/staxug.html (71 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

Execution Machine

Process execution machines have STAF processes and commands executed on them as defined by the STAX XML file.

1. Install STAF by following the installation instructions in the STAF documentation.

2. A process execution machine must give a trust level of 5 to the STAX Service machine. The syntax for the TRUST LEVEL

line that must be in the STAF configuration file on each execution machine is:

TRUST LEVEL 5 MACHINE <STAX Service machine>

Monitoring Machine

STAX Monitoring machines can monitor the STAX jobs in progress.

1. Install Java 1.3 or later.

The STAX Monitor is a Java application, so you need to install a JVM (e.g. Sun or IBM) on the STAX Monitoring
machine(s). IBM employees must download the Sun or IBM JVM from the internal JIM site. Non-IBM users can download
from http://java.sun.com. We recommend that you install the most recent fixpack for the JVM you want to use, so that you
will have all of the latest fixes.

Verify that the PATH environment variable contains the Java bin directory (e.g. C:\j2sdk1.4.2_05\bin). You can type "java -
version" to check the version of Java that's in the PATH.

2. Install STAF 2.1 or later (but less than STAF 3.0.0) by following the installation instructions in the STAF documentation.

Verify that the CLASSPATH environment variable contains the JSTAF.jar file (e.g. C:\STAF\bin\JSTAF.jar or
/usr/local/staf/lib/JSTAF.jar). JSTAF.jar contains the STAF Java APIs to communicate with STAF from Java programs and
is required to register STAF services written in Java.

3. Install the STAX Monitor by copying the STAXMon.jar file onto the system. Note that the STAXMon.jar file is obtained
by extracting the STAX zip/tar file as was already done on the STAX Service machine. We highly recommend copying it
into a first or second level directory, such as services or services/STAX, off of your STAF root directory (e.g.
C:\STAF\services or C:\STAF\services\STAX on Windows, /usr/local/staf/services or /usr/local/staf/services/STAX on
Unix) or to make starting the STAX Monitor easier.

4. A STAX Monitoring machine must give a trust level of at least 3 to the STAX Service machine. The syntax for the line that
must be in the STAF configuration file on each STAX Monitoring machine is:

TRUST LEVEL 3 MACHINE <STAX Service machine>

5. A STAX Monitoring machine must increase its maximum queue size to 10000. The syntax for the line that must be in the
STAF configuration file on each STAX Monitoring machine is:

SET MAXQUEUESIZE 10000

file:///C|/temp/staxug/staxug.html (72 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

Request Syntax
The STAX service provides the following requests:

● EXECUTE - Starts a job running based on a XML document which defines the workflow for a job.
● GET - Gets the STAX DTD (Document Type Definition).
● HELP - Displays a list of requests for the STAX service and how to use them.
● HOLD - Holds a job or a block in a job that is currently running.
● LIST - Lists all currently running jobs or specific information about a single job or the settings for the STAX service.
● QUERY - Queries information about a job that is currently running.
● RELEASE - Releases a job or a block in a job that is in the hold state.
● SET - Sets STAX service options.
● START - Starts a new testcase in a job that is currently running.
● STOP - Stops a testcase in a job that is currently running.
● TERMINATE - Terminates a job or a block in a job.
● UPDATE - Updates the status of a testcase in a job that is currently running.
● VERSION - Displays the version of the STAX service.

EXECUTE

EXECUTE starts the execution of a job based on an input XML document which defines the workflow for a job.

Syntax

EXECUTE < <FILE <xml file name> [MACHINE <machine name>]> | DATA <xml data> >
 [JOBNAME <job name>] [FUNCTION <function name>] [ARGS <Arguments>]
 [[SCRIPTFILE <file name>]... [SCRIPTFILEMACHINE <machine name>]]
 [SCRIPT <Python code>]... [CLEARLOGS [<Enabled | Disabled>]]
 [HOLD | TEST | WAIT [Timeout] [RETURNRESULT]]
 [LOGTCELAPSEDTIME <Enabled | Disabled>]
 [LOGTCNUMSTARTS <Enabled | Disabled>]
 [LOGTCSTARTSTOP <Enabled | Disabled>]

FILE specifies the fully qualified name of a file containing the XML document for the job to be executed. This option will resolve
STAF variables.

MACHINE specifies the name of the machine where the FILE is located. If not specified, it assumes the file is on the machine
submitting the STAX EXECUTE request. This option will resolve STAF variables.

DATA specifies a string containing the XML document for the job to be executed.

JOBNAME specifies the name of the job. This can aid in the identification of a specific job. The job name defaults to the value of the
function name called to start the job. This option will resolve STAF variables.

FUNCTION specifies the name of the function element to call to start the job, overriding the defaultcall element, if any, specified in
the XML document. The <function name> must be an name of a function element specified in the XML document. This option
will resolve STAF variables.

ARGS specifies arguments to pass to the function element called to start the job, overriding the arguments, if any, specified for the

file:///C|/temp/staxug/staxug.html (73 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

defaultcall element in the XML document. This option will not resolve STAF variables.

SCRIPTFILE specifies the fully qualified name of a file containing Python code to be executed. This is like a <script> element in
root <stax> element in the XML document, but defined when submitting an execute request, rather than within the XML
document. Note that a SCRIPTFILE parameter specified in an execute request will be executed by the STAX service after any
"global" <script> elements (that is, those contained directly within the root <stax> element), but before any SCRIPT parameters
are executed. Thus, you can override the value of a variable specified in a global <script> element by using a SCRIPTFILE
parameter in the execute request. You may specify as many SCRIPTFILE parameters as needed. This option will resolve STAF
variables.

SCRIPTFILEMACHINE specifies the name of the machine where the SCRIPTFILE(s) are located. If not specified, it defaults to the
value specified for MACHINE. If a MACHINE option was not specified, it assumes the script file(s) are on the machine
submitting the STAX EXECUTE request. This option will resolve STAF variables.

SCRIPT defines Python code to be executed. This is like a <script> element in root <stax> element in the XML document, but
defined when submitting an execute request, rather than within the XML document. Note that a script parameter specified in an
execute request will be executed by the STAX service after any "global" <script> elements (that is, those contained directly within
the root <stax> element) and after any SCRIPTFILE parameters are executes, but before the starting function is called. Thus, you
can override the value of a variable specified in a global <script> element or in a SCRIPTFILE by using a script parameter in the
execute request. You may specify as many SCRIPT parameters as needed.

CLEARLOGS is used to indicate that the STAX Job and Job User logs should be deleted before the job is executed. Since STAX job
numbers are reused, a specific job log may contain the results of more than one job. Valid values are "Enabled" and "Disabled", not
case-sensitive. If you specify "Enabled" or no value, the log files will be deleted for the job that is about to execute, in order to
ensure that only one job's contents are in the log. If you specify "Disabled", the job logs will not be deleted. This overrides the
service setting for "Clear Logs". This option will resolve STAF variables.

HOLD is used to hold the job after its been successfully parsed and the job id has been returned. This allows you to start the STAX
Monitor application and then release the job so that you can monitor the job from its beginning if desired.

TEST is used to test whether the execution options specified are valid, if an XML document is well-formed and valid, and if the
Python code specified in the XML document compiles successfully. When this option is specified, execution of the job is not
started.

WAIT is used to specify that the STAX EXECUTE request should not return until the STAX job has completed. If a Timeout value
is specified, the WAIT will timeout after the specified number of milliseconds.

RETURNRESULT is used to specify that you want the job result returned. The job result is the result returned by the starting function
of the job in a "string" format. This option is only valid if the WAIT option is specified.

LOGTCELAPSEDTIME is used to specify whether to log the elapsed time in the summary "Status" record for each testcase written at
the end of the STAX Job log and when you list testcases. Valid values are "Enabled" and "Disabled", not case-sensitive. This
option overrides the service setting for "Log TC Elapsed Time". This option will resolve STAF variables.

LOGNUMSTARTS is used to specify whether to log the number of starts in the summary "Status" record for each testcase written at
the end of the STAX Job log and when you list testcases. Valid values are "Enabled" and "Disabled", not case-sensitive. This
option overrides the service setting for "Log TC Num Starts". This option will resolve STAF variables.

LOGTCSTARTSTOP is used to specify whether to log a "Start" record each time a testcase begins and to log a "Stop" record each time
a testcase ends in the STAX Job log. Valid values are "Enabled" and "Disabled", not case-sensitive. This option overrides the
service setting for "Log TC Start/Stop". This option will resolve STAF variables.

file:///C|/temp/staxug/staxug.html (74 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

Security

This request requires at least trust level 4.

Results

● Upon successful return, if the TEST or RETURNRESULT options are not specified, the result buffer contains the Job ID.

● Upon successful return, if the TEST option is specified, the result buffer contains nothing.

● If the WAIT option is specified with a Timeout, and the request times out before the Job has completed, a RC 37 (Timeout)
is returned and the result buffer contains the Job ID.

● If the WAIT and RETURNRESULT options are specified, and the request does not timeout before the Job has completed,
the result buffer contains the Job ID and a "string" version of the Job Result, as follows:

<Job ID>;<Job Result>

For example, if a job's starting function returned 0 (to indicate success), the result buffer would contain

5;0

(assuming the Job ID is 5 and the wait did not timeout).

If nothing is returned by a job, the job result is None and the result buffer would contain

1;None

(assuming the Job ID is 1 and the wait did not timeout). The job may not return anything if a <return> element is not
executed in the starting function. This could be due to many reasons, such as an error occurring, the job being terminated, or
if the starting function doesn't contain a <return> element.

Examples

Goal: Execute a job defined by an XML file named d:\stax\xml\JobA.xml and give it a job name of JobA.

EXECUTE FILE D:\stax\xml\JobA.xml JOBNAME JobA Goal: Test if a XML job file named d:\stax\xml\JobA.xml is valid
without actually starting the execution of the job.

EXECUTE FILE D:\stax\xml\JobA.xml TEST

Goal: Execute a job defined by an XML file named d:\stax\xml\Ogre.xml which is located on machine MachA and assign a literal
string 'OgreSrv1' to a Python variable named S1.

EXECUTE FILE C:\stax\Ogre.xml MACHINE MachA SCRIPT "S1 = 'OgreSrv1'"

Goal: Execute a job defined by an XML file named /tests/test1.xml which is located on machine MachA and execute Python code
contained in file /tests/init1.py located on machine MachB.

EXECUTE FILE /tests/test1.xml MACHINE MachA SCRIPTFILE /tests/init1.py SCRIPTFILEMACHINE MachB

file:///C|/temp/staxug/staxug.html (75 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

Goal: Execute a job defined by an XML file named d:\stax\xml\ProcessXYZ.xml, starting at ProcessY, and hold the job so that it
can be monitored from the beginning.

EXECUTE FILE D:\stax\xml\ProcessXYZ.xml JOBNAME JobXYZ FUNCTION ProcessY HOLD

Goal: Execute a job defined by an XML file named /test/staxtest.xml located on the local machine, starting at function Main, and
pass a list of tests as the arguments to the function.

EXECUTE FILE /test/staxtest.xml FUNCTION Main ARGS "['test1', 'test2', 'test3']"

Goal: Execute a job defined by an XML file named /test/sample.xml located on the local machine, starting at function InitJob, and
pass a map that contains a list of machines and a duration as the arguments to the function.

EXECUTE FILE /test/sample.xml FUNCTION InitJob ARGS "{ 'MachList': ['machA', 'machB'], 'duration':

'5m' }"

Goal: Execute a job defined by an XML file named d:\stax\xml\JobA.xml and wait indefinitely for the job to complete before
returning and return the job result in addition to the job ID in the result buffer.

EXECUTE FILE D:\stax\xml\JobA.xml WAIT RETURNRESULT

Goal: Execute a job defined by an XML file named d:\stax\xml\JobA.xml and wait for up to 1 hour for the job to complete before
returning.

EXECUTE FILE D:\stax\xml\JobA.xml WAIT 3600000

Goal: Execute a job defined by an XML file named /tests/Scenario1.xml and to clear its job logs before execution and to enable
"Log TC Elapsed Time", "Log TC Num Starts", and "Log TC Start/Stops".

EXECUTE FILE /tests/Scenario1.xml CLEARLOGS Enabled LOGTCELAPSEDTIME Enabled LOGTCNUMSTARTS Enabled

LOGTCSTARTSTOP Enabled

GET

GET DTD displays the DTD (Document Type Definition) for the STAX Service. An XML document executed by the STAX
Service is considered valid if the document complies with this DTD. Note that DTDs are all about specifying the structure and
syntax of XML documents (not their content).

Syntax

GET DTD

Security

This request requires at least trust level 2.

Results

The result buffer contains the DTD for the STAX service.

file:///C|/temp/staxug/staxug.html (76 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

HELP

Help displays the request options and how to use them.

Syntax

HELP

Results

The result buffer contains the Help messages for the request options for the STAX service.

HOLD

HOLD allows you to hold a job or a currently running block in a job.

Syntax

HOLD JOB <JobID> [BLOCK <Block Name>]

JOB specifies the ID of the job to hold. If no block is specified, then the "main" block in the job (which, by default, encompasses
the entire job) is held which means all processes and STAF commands currently running are held until the job is released using a
STAX RELEASE JOB <JobID> request.

BLOCK specifies a particular block in the job to hold. The block name must correspond to a block element name specified in the
XML document. If a block in a job is held, all of the processes and STAF commands currently running within that block are held
until that block is released using a STAX RELEASE JOB <JobID> BLOCK <Block Name> request.

A child block cannot be held if it is being held by a parent block.

Security

This request requires at least trust level 4.

Results

Upon successful return, the result buffer does not contain anything.

Examples

Goal: Hold all of job 5.
 HOLD JOB 5

Goal: Hold block MachineB in job 31.
 HOLD JOB 31 BLOCK MachineB

LIST

file:///C|/temp/staxug/staxug.html (77 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

LIST allows you to list all of the jobs currently running or to list information about a specified job's threads, blocks, testcases,
processes, or STAF commands. LIST also allows you to list the current operational settings for the service or to list extensions
registered for the service, by element name or by extension jar file name.

Syntax

LIST JOBS | SETTINGS | EXTENSIONS | EXTENSIONJARFILES |
 JOB <Job ID> < THREADS | BLOCKS | TESTCASES | PROCESSES |

 STAFCMDS | SUBJOBS | <List Type> >

JOBS lists the jobs that are currently running.

SETTINGS lists the current operational settings for the service.

EXTENSIONS lists the extension elements registered for the service in alphbetical order.

EXTENSIONJARFILES lists the names of the extension jar files registered for the service.

JOB specifies the Job ID for a currently running job.

THREADS lists the threads that are currently running for the specified job.

BLOCKS lists the blocks that are currently running for the specified job.

TESTCASES lists the testcases that have had test status (number of passes and fails) recorded for the specified job.

PROCESSES lists the processes that are currently running for the specified job.

STAFCMDS lists the STAF commands that are currently running for the specified job.

SUBJOBS lists the sub-jobs that are currently running for the specified job (initiated via the <job> element).

<List Type> lists the extensions of the specified type that are currently running for the specified job.

Security

This request requires at least trust level 2.

Results

Upon successful return, the result buffer will contain information about the request in the following format:

LIST JOBS

<Job ID>;<Job Name>;<Function>;<Function Arguments>

The <Job Name> value is set to <N/A> if a job name was not specified for the job.

The <Function> value is set to the "function" parameter specified on the EXECUTE request or if one wasn't specified, it is set to
the defaultcall element's function value.

file:///C|/temp/staxug/staxug.html (78 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

The <Function Arguments> value is set to None if no arguments were specified.

LIST SETTINGS

Event Machine : <Event Machine>
Event Service Name : <Event Service Name>
Number of Threads : <Num Threads>
Process Timeout : <Process Timeout>
Clear Logs : <Enabled | Disabled>
Log TC Elapsed Time: <Enabled | Disabled>
Log TC Num Starts : <Enabled | Disabled>
Log TC Start/Stop : <Enabled | Disabled>

<Event Machine> is the name of the Event service machine used by the STAX Service.

<Event Service Name> is the name by which the Event service is known to the STAX service.

<Num Threads> is the number of physical threads used by the STAX Service.

<Process Timeout> is the number of milliseconds that the STAX service waits for processes to start.

LIST EXTENSIONS

<Extension Element>;<Extension Jar File>

<Extension Element> is the name of each extension element registered for the STAX Service (enclosed in < and >).

<Extension Jar File> is the name of the extension jar file which contains the extension.

A line for each extension element registered is displayed.

LIST EXTENSIONJARFILES

<Extension Jar File>;<Version>;<Description>

<Extension Jar File> is the name of the extension jar file which contains the extension.

<Version> is the version of the extensions provided in the extension jar file. It is obtained from extension jar file's manifest via the
"Extension-Version" attribute. If the version is not provided in the manifest, <Not Provided> is displayed.

<Description> is the description of the extensions provided in the extension jar file. It is obtained from the extension jar file's
manifest via the "Extension-Description" attribute. If the description is not provided in the manifest, <Not Provided> is displayed.

A line for each extension jar file registered is displayed.

LIST JOB <Job ID> THREADS

<Thread ID>;<Thread State>

A line for each thread currently running for the specified Job is displayed. If a thread has a parent thread, it will be indented with

file:///C|/temp/staxug/staxug.html (79 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

".." to indicate its parent thread hierarchy.

LIST JOB <Job ID> BLOCKS

<Block Name>;<Status>

A line for each block that is currently in a running or held state for the specified Job is displayed. The block names are displayed in
a ParentBlock.ChildBlock format. Note that every job contains a default "main" block which includes the entire job.

LIST JOB <Job ID> TESTCASES

<Testcase Name>;<NumPasses>;<NumFails>[;<ElapsedTime>][;<NumStarts>]

A line for each testcase that has had a testcase status recorded for the specified Job is displayed.

<Testcase Name> is the testcase name in a ParentTestcase.ChildTestcase format.

<NumPasses> is the total number of passes for a testcase

<NumFails> is the total number of fails for a testcase

<ElapsedTime> is the committed elapsed time for a testcase. It is provided if "Log TC Elapsed Time" is enabled for the job. The
format is HH:MM:SS (or HHH:MM:SS if over 99 hours) or <Pending> if the testcase has not yet been stopped in the job via a
</testcase> or STOP request.

<NumStarts> is the number of times the testcase has been started in the job via a <testcase> element and/or a START request. It is
provided if "Log TC Num Starts" is enabled for the job.

LIST JOB <Job ID> PROCESSES

<Name>;<Location>;<Handle>;<Command>;<Parms>

A line for each process that is currently running in the specified Job is displayed.

LIST JOB <Job ID> STAFCMDS

<Name>;<Location>;<RequestNum>;<Service>;<Request>

A line for each STAF command that is currently running in the specified Job is displayed.

LIST JOB <Job ID> SUBJOBS

<Job ID>;<Job Name>;<Block Name>;<Function>;<Function Arguments>

A line for each sub-job that is currently running in the specified Job is displayed. The <Job Name> value is set to <N/A> if a job
name was not specified for the sub-job.

Examples

Goal: List all of the jobs.
 LIST JOBS

file:///C|/temp/staxug/staxug.html (80 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

Output:
 3;JobXYZ;FunctionX;None
 4;OgreJob;OgreFunction;0
 6;<N/A>;FunctionA;{ 'MachList': ['machA', 'machB'], 'duration': '2m' }

Goal: List the STAX service operational settings.
 LIST SETTINGS

Output:
 Event Machine : server1.austin.ibm.com
 Event Service Name : Event
 Number of Threads : 5
 Process Timeout : 60000
 Clear Logs : Disabled
 Log TC Elapsed Time: Enabled
 Log TC Num Starts : Enabled

 Log TC Start/Stop : Disabled

Goal: List the STAX service extension elements:
 LIST EXTENSIONS

Output:
 <email>;C:/STAXExt/EmailExt.jar
 <ext-delay>;C:/STAF/services/STAX/ExtDelay.jar
 <ext-sleep>;C:/STAF/services/STAX/ExtDelay.jar
 <ext-wait>;C:/STAF/services/STAX/ExtDelay.jar

Goal: List the extension jar files registered for the STAX version:
 LIST EXTENSIONJARFILES

Output:
 C:/STAXExt/ExtDelay.jar;1.0.0;Delay STAX Extensions
 C:/STAXExt/ExtMessageText.jar;1.0.0;Message Text STAX Monitor Extension
 C:/STAXExt/email.jar;1.0.0;eMail STAX Service Extension

Goal: List all of the threads running for a job with Job ID 12.
 LIST JOB 12 THREADS

Output:
 1;Blocked
 ..2;Blocked
 3;Blocked
 6;Blocked
 ..4;Blocked
 5;Blocked

Goal: List all of the blocks running for a job with Job ID 35.
 LIST JOB 35 BLOCKS

Output:
 main;Running
 main.BlockA;Running

file:///C|/temp/staxug/staxug.html (81 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 main.BlockA.BlockB;Held
 main.BlockB;Running

Goal: List all of the testcases that have recorded testcase status for a job with Job ID 7 and with "Log TC Elapsed Time" and "Log
TC Num Starts" enabled.
 LIST JOB 7 TESTCASES

Output:
 TestA.TestB;1;0;00:20:13;1
 TestA.TestC;5;1;01:32:05;3
 TestD;0;1;<Pending>;1

Goal: List all of the testcases that have recorded testcase status for a job with Job ID 7 and with "Log TC Elapsed Time" and "Log
TC Num Starts" disabled.
 LIST JOB 7 TESTCASES

Output:
 TestA.TestB;1;0
 TestA.TestC;5;1
 TestD;0;1

Goal: List all of the processes running for a job with Job ID 41.
 LIST JOB 41 PROCESSES

Output:
 Process0;machineB;196;java;com.ibm.staf.service.stax.TestProcess 2 5 100
 Process2;machineB;213;java;ICC_ProfileRGB
 Process3;machineB;216;sol;
 Process4;machineC;223;notepad;

Goal: List all of the STAF commands running for a job with Job ID 37.
 LIST JOB 37 STAFCMDS

Output:
 STAFCommand22;serverA;343;service;list services
 STAFCommand23;serverA;349;echo;echo Hello World
 STAFCommand24;machineC;351;service;list requests

Goal: List all sub-jobs for a job with Job ID 1.
 LIST JOB 1 SUBJOBS

Output:
 2;JobXYZ;Main;Function1;None
 3;MyJob;Main;FunctionXYZ;0
 4;<N/A>;WinNT_Block;FunctionA;{ 'MachList': ['machA', 'machB'], 'duration': '2m' }

QUERY

QUERY allows you to query a job, an extension jar file, or all extension jar files.

file:///C|/temp/staxug/staxug.html (82 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

Syntax

QUERY JOB <Job ID> [BLOCK <Block Name> | THREAD <ThreadID> | TESTCASE <Test Name> |
 PROCESS <Location:Handle> | STAFCMD <Request#> |
 <Query Type> <Type Value>] |

 EXTENSIONJARFILE <Jar File Name> | EXTENSIONJARFILES

JOB specifies the ID of a job to query that is currently running. Basic information about the job is returned if BLOCK, THREAD,
TESTCASE, PROCESS, or STAFCMD are not specified.

BLOCK specifies the name of a currently running block in the job to query. The request returns more detailed information about the
specified block.

THREAD specifies a currently running Thread ID in the job to query. The request returns more detailed information about the
specified thread.

TESTCASE specifies a testcase name in the job to query. The request returns more detailed information about the specified testcase.

PROCESS specifies a location and handle number (separated by a colon) that uniquely identifies a currently running process in the
job to query. The request returns more detailed information about the specified process.

STAFCMD specifies a request number that uniquely identifies a currently running STAF command in the job to query. The request
returns more detailed information about the specified STAF command.

<Query Type> specifies a value for the extension type that uniquely identifies a currently running extension of the specified type
in the job to query.

EXTENSIONJARFILE specifies the name of an extension jar file to query. The request returns more detailed information about the
specified extension jar file, such as what elements it provides and what version of the STAX service is required. Note that the name
of the extension jar file is case sensitive and must be specified exactly as it appears in the output from LIST EXTENSIONS or
LIST EXTENSIONJARFILES.

EXTENSIONJARFILES specifies to query all of the extension jar files registered for the STAX service. The request returns more
detailed information about all of the extension jar files, such as what elements each provides and what version of the STAX service
is required.

Security

This request requires at least trust level 2.

Results

Upon successful return, the result buffer will contain information about the request in the following format:

QUERY JOB <Job ID>

Job ID :
Job Name :
XML File Name :
File Machine :
Function :

file:///C|/temp/staxug/staxug.html (83 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

Arguments :
Script #n : (One for each SCRIPT parameter specified)
Script File #n: (One for each SCRIPTFILE parameter specified)
Script Machine: (If one or more SCRIPTFILE parameters were specified)
Start Date :
Start Time :
Source Machine:
Blocks Running:
Blocks Held :
Clear Logs : <Enabled | Disabled>
Log TC Elapsed Time: <Enabled | Disabled>
Log TC Num Starts : <Enabled | Disabled>
Log TC Start/Stop : <Enabled | Disabled>

QUERY JOB <Job ID> BLOCK <Block Name>

Block Name:
State :
Thread ID :
Start Date:
Start Time:

QUERY JOB <Job ID> THREAD <Thread ID>

Thread ID :
Parent TID :
Start Date :
Start Time :

Call Stack :

 Block: <Block Name>
 Break:
 Call: <Function Name>
 Continue:
 Script: <Value>
 Function: <Function Name>
 Hold:
 If: <If Expression>
 Iterate: <Index of Current Item in List> <List (1st 40 chars)>
 Log: <Message Value (1st 40 chars)>
 Loop: var=<Var Index Value> to <Value> [by <Value>] [while <Value>] [until <Value>]
 Message: <Message Value (1st 40 chars)>
 Nop:
 Process: <Process Name>
 Parallel: <Number of Tasks>
 ParallelIterate: <Number of Iterations>/<State>
 Raise: <Signal Name>
 Release:
 Sequence: <Index fo Current Task>/<Number of Tasks>
 SignalExecutionAction: <Signal Name>
 STAFCommand: <STAF Command Name>
 Terminate:

file:///C|/temp/staxug/staxug.html (84 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 Testcase: <Testcase Name>
 TestcaseStatus: <Status Result>

Condition Stack:

 <Condition>: Source=<Source>, Priority=<Priority>

QUERY JOB <Job ID> TESTCASE <Test Name>

Testcase Name :
Passes :
Fails :
Last Status :
Last Status Date:
Last Status Time:
Elapsed Time :
Number of Starts:

The format for "Elapsed Time" is HH:MM:SS (or HHH:MM:SS if over 99 hours) or <Pending> if the testcase has not yet been
stopped in the job via a </testcase> or STOP request.

QUERY JOB <Job ID> PROCESS <Location:Handle>

Name :
Location :
Handle :
Block Name :
Thread ID :
Start Date :
Start Time :
Command :
Command Mode :
Parms : (if specified)
Title : (if specified)
WorkDir : (if specified)
Workload : (if specified)
Var : (if specified - multiple vars can be specified)
Env : (if specified - multiple envs can be specified)
UseProcessVars : (if specified - set to true)
UserName : (if specified)
Password : (if specified)
DisabledAuth : (if specified)
STDIN : (if specified)
STDOUT : (if specified - prefixed with its mode)
STDERR : (if specified - prefixed with its mode)
ReturnSTDOUT : (if specified - set to true)
ReturnSTDERR : (if specified - set to true)
ReturnFile : (if specified - multiple returnfiles can be specified)
StopUsing : (if specified - set to true)
Console : (if specified)
StaticHandleName: (if specified)
Other : (if specified)

file:///C|/temp/staxug/staxug.html (85 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

QUERY JOB <Job ID> STAFCMD <Request#>

Name :
Location :
RequestNum:
Service :
Request :
Block Name:
Thread ID :
Start Date:
Start Time:

QUERY EXTENSIONJARFILE <Jar File Name>

Jar File Name :
Version :
Description :
Service Version Prereq: (if the extension jar file contains service extensions)
Monitor Version Prereq: (if the extension jar file contains monitor extensions)
Parameter #n : (one for each parameter specified in the extension xml file)
Element Name #n : (one for each extension element)
Monitor Extension #n : (one for each monitor extension)

Jar File Name is set to the name of the extension jar file.

Version is set to the version specified for the extension jar file in its manifest via the "Extension-Version" attribute. If not
provided, it is set to <Not Provided>.

Description is set to the description specified for the extension jar file in its manifest via the "Extension-Description" attribute.
If not provided, it is set to <Not Provided>.

Service Version Prereq is set to the minimum version of the STAX service required for this extension. It is obtained from the
"Required-Service-Version" attribute in the manifest of the extension jar file. It not provided, it is set to <None>. If this extension
jar file does not provide any extension elements, this line is not displayed.

Monitor Version Prereq is set to the minimum version of the STAX monitor required for this extension. It is obtained from
the "Required-Monitor-Version" attribute in the manifest of the extension jar file. It not provided, it is set to <None>. If this
extension jar file does not provide any Monitor Extensions, this line is not displayed.

Parameter #n is set to a Name=Value pair for each <parameter> element specified for this extension via an extension xml file.
There will be a line for each parameter entry or no "Parameter #n" lines if no parameters are specified.

Element Name #n is set to the name of an element provided for this extension. There will be a line for each extension element or
no "Element Name #n" lines if no elements are provided. If the element name is excluded in the extension xml file, <N/A> is
displayed in front of the element name.

Monitor Extension #n is set to the name of a monitor extension provided for this extension. There will be a line for each
monitor extension provided or no "Monitor Extension #n" lines if no monitor extensions are provided.

QUERY EXTENSIONJARFILES

file:///C|/temp/staxug/staxug.html (86 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

Jar File Name :
Version :
Description :
Service Version Prereq: (if the extension jar file contains service extensions)
Monitor Version Prereq: (if the extension jar file contains monitor extensions)
Element Name #n : (one for each extension element)
Monitor Extension #n : (one for each monitor extension)

Jar File Name :
Version :
Description :
Service Version Prereq: (if the extension jar file contains service extensions)
Monitor Version Prereq: (if the extension jar file contains monitor extensions)
Element Name #n : (one for each extension element)
Monitor Extension #n : (one for each monitor extension)

... (repeated for each extension jar file)

Examples

Goal: Query a job with ID 5.

 QUERY JOB 5

Output:

 Job ID : 5
 Job Name : Ogre
 XML File Name : c:\stax\xml\Ogre.xml
 File Machine : machA.austin.ibm.com
 Function : OgreA
 Arguments : None
 Script #1 : server1='serverA'
 Script #2 : server2='serverB'
 Script File#1 : c:\stax\python\init.py
 Script Machine: machA.austin.ibm.com
 Start Date : 20031017
 Start Time : 13:16:08
 Source Machine: machB.austin.ibm.com
 Blocks Running: 5
 Blocks Held : 0
 Clear Logs : Disabled
 Log TC Elapsed Time: Enabled
 Log TC Num Starts : Enabled
 Log TC Start/Stop : Disabled

Goal: Query a job with ID 5 displaying more detailed information about a block named main.Ogre.OgreA.

 QUERY JOB 5 BLOCK main.Ogre.OgreA

Output:

 Block Name: main.Ogre.OgreA

file:///C|/temp/staxug/staxug.html (87 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 State : Running
 Thread ID : 1
 Start Date: 20010724
 Start Time: 13:15:21

Goal: Query a job with ID 8 displaying more detailed information about a thread whose thread id is 2.

 QUERY JOB 8 THREAD 2

Output:

 Thread ID : 2
 Parent TID : 1
 Start Date : 20010808
 Start Time : 17:33:43

 Call Stack :

 Block: main.local
 Testcase: local
 Function: TestElementsFunction
 Block: main.local.BlockWithManyElements
 Testcase: local.TestWithManyElements
 Loop: var=1 to 2
 Sequence: 1/4
 STAFCommand: STAFCommand0

 Condition Stack:

 HoldThread: Source=STAFCommand, Priority=1000
 HoldThread: Source=Block, Priority=1000

Goal: Query a job with ID 5 displaying more detailed information about a testcase named machA.OgreTest.

 QUERY JOB 5 TESTCASE machA.OgreTest

Output:

 Testcase Name : machA.OgreTest
 Passes : 3
 Fails : 1
 Last Status : fail
 Last Status Date: 20031017
 Last Status Time: 13:15:53
 Elapsed Time : 00:15:20
 Number of Starts: 1

Goal: Query a job with ID 4 displaying more detailed information about a process running at location machine1 with handle 91.

 QUERY JOB 4 PROCESS machine1:91

Output:

file:///C|/temp/staxug/staxug.html (88 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 Name : TestProcess
 Location : machine1
 Handle : 91
 Block Name : main.machine1
 Thread ID : 2
 Start Date : 20010907
 Start Time : 00:41:39
 Command : java
 Command Mode : default
 Parms : com.ibm.staf.service.stax.TestProcess 2 5 100
 Title : Test Process Title
 Var : STAFDemo/ResourcePoolMachine=machA
 Var : STAF/Service/Log/Mask=Error
 Env : CLASSPATH={STAFDemo/JavaAppClassPath}
 STDOUT : replace c:\temp\aProcess.out
 STDERR : append c:\temp\aProcess.out

Goal: Query a job with ID 8 displaying more detailed information about a STAF command with request number 2019.

 QUERY JOB 8 STAFCMD 2019

Output:

 Name : STAFCommand3
 Location : local
 RequestNum: 2019
 Service : delay
 Request : delay 5484
 Block Name: main.local.STAFCommandBlock0
 Thread ID : 2
 Start Date: 20010808
 Start Time: 16:58:47

Goal: Query an extension jar file with name C:/STAF/services/ExtDelay.jar displaying more detailed information about the Delay
extension.

 QUERY EXTENSIONJARFILE C:/STAF/servcies/ExtDelay.jar

Output:

 Jar File Name : C:/STAF/services/ExtDelay.jar
 Version : 1.0.0
 Description : Delay STAX Extensions
 Service Version Prereq: 1.4.0
 Monitor Version Prereq: 1.4.1
 Parameter #1 : delay=5
 Element Name #1 : ext-delay
 Element Name #2 : <N/A> ext-sleep
 Element Name #3 : <N/A> ext-wait
 Monitor Extension #1 : ext-delay

Goal: Query all extension jar files displaying more detailed information about the STAX extensions.

file:///C|/temp/staxug/staxug.html (89 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 QUERY EXTENSIONJARFILES

Output:

 Jar File Name : C:/STAF/services/ExtDelay.jar
 Version : 1.0.0
 Description : Delay STAX Extensions
 Service Version Prereq: 1.4.0
 Monitor Version Prereq: 1.4.1
 Parameter #1 : delay=5
 Element Name #1 : ext-delay
 Element Name #2 : <N/A> ext-sleep
 Element Name #3 : <N/A> ext-wait
 Monitor Extension #1 : ext-delay

 Jar File Name : C:/STAF/services/ExtMessageText.jar
 Version : 1.0.0
 Description : Message Text STAX Monitor Extension
 Monitor Version Prereq: 1.4.1
 Monitor Extension #1 : message

RELEASE

RELEASE allows you to release a job or a block in a job. The job or job block to be released has to be in HELD state.

Syntax

RELEASE JOB <JobID> [BLOCK <Block Name>]

JOB specifies the ID of the job.

BLOCK specifies a particular block in the job to release. The block name must correspond to a block element name in the XML
document.

If a BLOCK is not specified, then the "main" block in the job (which, by default, encompasses the entire job) is released.

A block will not resume execution until all holds affecting it have been released.

Security

This request requires at least trust level 4.

Results

Upon successful return, the result buffer does not contain anything.

Examples

Goal: Release all of job 5.
 RELEASE JOB 5

file:///C|/temp/staxug/staxug.html (90 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

Goal: Release job 23 in block MachineB.
 RELEASE JOB 23 BLOCK MachineB

SET

SET allows you to change the operational parameters of the STAX service. The same parameters for the SET request can be
specified when registering the STAX service. Note that a setting change only effects any new STAX jobs, not STAX jobs that are
already running.

Syntax

SET [CLEARLOGS <Enabled | Disabled>]
 [LOGTCELAPSEDTIME <Enabled | Disabled>]
 [LOGTCNUMSTARTS <Enabled | Disabled>]
 [LOGTCSTARTSTOP <Enabled | Disabled>]

See section "Installation and Configuration, STAX Service Machine" for a description of these options.

Security

This request requires at least trust level 5.

Results

The result buffer will contain the option(s) requested to be set.

Examples

Goal: Enable clear logs.
 SET CLEARLOGS Enabled

Results:
 Clear Logs : Enabled

Goal: Enable all additioal testcase logging.
 SET LOGTCELAPSEDTIME Enabled LOGTCNUMSTARTS Enabled LOGTCSTARTSTOP Enabled
Results:
 Log TC Elapsed Time: Enabled
 Log TC Num Starts : Enabled
 Log TC Start/Stop : Enabled

Goal: Disable logging "Start" and "Stop records each time a testcase begins and ends.
 SET LOGTCSTARTSTOP Disabled
Results:
 Log TC Start/Stop : Disabled

START

START allows you to start a new testcase in a STAX job that is currently running. It performs basically the same action as a
<testcase> element with the 'strict' mode, including logging a "Start" level message in the STAX Job log if "Log TC Start/Stop" is
enabled for the job. A START request sets the start time for the testcase from which its elapsed time will be calculated. For

file:///C|/temp/staxug/staxug.html (91 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

example, a START request can be submitted from a shell script or Java program, etc. that is run via a <process> element to start a
testcase.

Syntax

START JOB <JobID> TESTCASE <Testcase Name> [KEY <Key>]

JOB specifies the ID of the job.

TESTCASE specifies the fully qualified name of the testcase to be started. If a testcase with the same name is currently active, you
must specify a key to uniquely identify the active testcase. You may want to prefix the name of the testcase with the value
provided in the STAXCurrentTestcase Python variable to maintain the testcase hierarchy.

KEY specifies a unique identifier for this testcase when combined with the Testcase name. A key must be specified if a testcase
with the same name is already currently active (started and not yet stopped).

For example, if your STAX job contains a <paralleliterate> element that iterates over a list of machines and this element contains a
<process> element and the process submits a START request for a testcase, a key must be specified in the START request to
uniquely identify the testcase. For example, you may want to specify the machine name where the process is running and the
process handle for the key, e.g. KEY machineA:48.

We strongly recommend that you always specify a KEY so that the testcase can be run in parallel.

Security

This request requires at least trust level 3.

Results

Upon successful return, the result buffer does not contain anything.

Examples

Goal: Start a testcase named "Scenario01.Test2.MachineA" in job 3.
 START JOB 3 TESTCASE "Scenario01.Test2.MachineA"

Goal: Start a testcase named "Scenario01.Test3" in job 12 in parallel on machine clientA (process handle 48) and on machine
clientB (process handle 86).
 START JOB 12 TESTCASE Scenario01.Test3 KEY clientA:48
 START JOB 12 TESTCASE Scenario01.Test3 KEY clientB:86

STOP

STOP allows you to stop an active testcase (which was started via a START request) in a STAX job that is currently running. It
performs basically the same action as a </testcase> element, including logging a "Stop" level message in the STAX Job log if "Log
TC Start/Stop" is enabled. A STOP request sets the stop time for the testcase from which its elapsed time will be calculated.

For example, a STOP request can be submitted from a shell script or Java program, etc. that is run via a <process> element to stop
a testcase.

Syntax

file:///C|/temp/staxug/staxug.html (92 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

STOP JOB <JobID> TESTCASE <Testcase Name> [KEY <Key>]

JOB specifies the ID of the job.

TESTCASE specifies the fully qualified name of the active testcase to be stopped. The testcase name specified must already exist
and must have been started via a START request.

KEY specifies a unique identifier for the testcase when combined with the Testcase name. If the testcase was started with a key
specified, the same key must be specified in the testcase's corresponding STOP request.

Security

This request requires at least trust level 3.

Results

Upon successful return, the result buffer does not contain anything.

Examples

Goal: Stop a testcase named "Scenario01.Test2.MachineA" in job 3.
 STOP JOB 3 TESTCASE "Scenario01.Test2.MachineA"

Goal: Stop a testcase named "Scenario01.Test3" in job 12 that is running in parallel on machines clientA (process handle 48) and
clientB (process handle 86).
 STOP JOB 12 TESTCASE Scenario01.Test3 KEY clientA:48
 STOP JOB 12 TESTCASE Scenario01.Test3 KEY clientB:86

TERMINATE

TERMINATE allows you to terminate a job or a block in a job.

Syntax

TERMINATE JOB <JobID> [BLOCK <Block Name>]

JOB specifies the ID of the job to terminate. If a BLOCK is not specified, then the "main" block in the job (which, by default,
encompasses the entire job) is terminated which means all processes and STAF commands currently running are terminated.

BLOCK specifies a particular block in the job to terminate. The block name must correspond to a block element name in the XML
document. If a block in a job is terminated, the processes and STAF commands that are currently running in the block are
terminated.

Security

This request requires at least trust level 4.

Results

Upon successful return, the result buffer does not contain anything.

file:///C|/temp/staxug/staxug.html (93 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

Examples

Goal: Terminate all of job 5.
 TERMINATE JOB 5

Goal: Terminate job 23 in block MachineB.
 TERMINATE JOB 23 BLOCK MachineB

UPDATE

UPDATE allows you to update the status of a testcase in a job that is currently running. It performs basically the same action as a
<tcstatus> element contained in a job's XML file. For example, an update request can be performed within a process running in a
job to update the status for a testcase.

Syntax

UPDATE JOB <JobID> TESTCASE <Testcase name> STATUS <Status> [MESSAGE <Message text>] [FORCE]

JOB specifies the ID of the job.

TESTCASE specifies the fully qualified name of the testcase whose status is to be updated. The testcase specified must already
exist, unless FORCE is also specified. If you wanted a process defined by a <process> element in a job to update the status of the
current testcase, the value of the STAXCurrentTestcase Python variable could be passed to the process via the <parms> element or
<env> element and an UPDATE request could be submitted from within the process, specifying the current testcase value passed
in for the TESTCASE option.

STATUS specifies whether the testcase passed or failed. The result must be Pass or Fail (not case-sensitive). The pass or fail status
for the testcase will be incremented accordingly.

MESSAGE specifies additional information about the status for a testcase. It is optional.

FORCE specifies that if the testcase does not already exist, it should be added to the testcase map. Note that without a FORCE
option, you cannot update the status of a testcase without the testcase already existing.

An event will be generated that sends a message to the STAX Job Monitor with the testcase status information.

Testcase status information is displayed in the "Testcase Information" section of the STAX Monitor GUI. A summary of the
number of passes and fails for each testcase, as well as any additional information specified about the status of a testcase is logged
in the STAX Job Log.

Security

This request requires at least trust level 3.

Results

Upon successful return, the result buffer does not contain anything.

Examples

file:///C|/temp/staxug/staxug.html (94 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

Goal: Increment the pass status for existing testcase "Scenario01.Test2.MachineA" in job 3.
 UPDATE JOB 3 TESTCASE "Scenario01.Test2.MachineA" STATUS pass

Goal: Increment the fail status for testcase "Memory Test" in job 21 and record a message about the cause of the failure. If the
testcase does not exist, create it.
 UPDATE JOB 21 TESTCASE "Memory Test" STATUS Fail MESSAGE "RC=1. Open a defect" FORCE

VERSION

VERSION displays the version level of the STAX service.

Syntax

VERSION

Security

This request requires at least trust level 2.

Results

The result buffer contains the version level of the STAX service.

STAX Monitoring
A Monitor application is available for the STAX Service. This application displays a real-time graphical representation of the
currently running elements of a given STAX job.

The STAX Monitor application displays a list of all active jobs and an indication of which jobs are currently being monitored. The
STAX Monitor application also provides a graphical user interface for the EXECUTE request which allows you to submit new
jobs for execution and monitor the job from its beginning, if desired.

For each job that is monitored, the STAX Monitor application displays all currently executing <process>, <stafcmd>, <block>, and
<job> elements for a STAX job. The graphical representation is a tree format, in order to show the hierarchy of the currently
executing elements. The STAX Monitor application allows you to control the execution of the job by selecting a <block> element
to hold, release, or terminate.

The STAX Monitor application also displays any testcases that have been executed and their status as well as any messages that
have been sent via <message> elements or from the STAX service itself.

Multiple jobs can be monitored at the same time.

Starting the STAX Monitor

You can start the STAX Monitor using the -jar option, without adding the STAXMon.jar file to your CLASSPATH environment
variable, if your STAXMon.jar file is in a first or second level directory off your STAF root directory (such as C:\STAF\services or

file:///C|/temp/staxug/staxug.html (95 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

C:\STAF\services\STAX on Windows or /usr/local/staf/services or /usr/local/staf/services/STAX on Unix systems). Note that
when using the -jar option, Java does not use the CLASSPATH environment variable or the -cp option.

If your current directory contains STAXMon.jar, then to start the STAX Monitor, type:

 java -jar STAXMon.jar

Or, if you are in another directory, fully qualify the STAXMon.jar file. So, if the STAXMon.jar file is in C:\STAF\services, type:

 java -jar C:\STAF\services\STAXMon.jar

Or, you can start the STAX Monitor by specifying the main Java class name (which is case sensitive). When using this method,
you must make sure that the STAXMon.jar and JSTAF.jar files are in your classpath and then type:

 java com.ibm.staf.service.stax.STAXMonitor

The STAX Monitor accepts the following command line parameters:

 -job <jobNumber> [-closeonend]
 -jobparms <jobParmsFile> [-closeonend]
 -extensions
 -properties [-staxMachine <machineName>] [-staxServiceName <serviceName>]
 [-eventMachine <machineName>] [-eventServiceName <serviceName>]
 [-noStart]
 -version
 -help

-job specifies an existing job ID to monitor. This option will resolve variables.

-closeonend specifies that the STAX Monitor GUI should be closed when the monitored job ends. By default, the STAX Monitor
GUI remains open when the monitored job ends.

-jobparms specifies a Job Parameters File for which a new STAX job should be submitted (and monitored, if specified in the Job
Parameters File). A Job Parameters File can be created by using the File Save or File Save As option on the STAX Monitor's "Start
Job Parameters" window. This option will resolve variables.

-extensions displays the monitor extensions that are registered with the STAX Monitor.

-properties specifies to update one or more properties for the STAX Monitor.

-staxMachine specifies the name of the machine where the STAX service is running. This option will resolve variables.

-staxServiceName specifies the name used to register the STAX service. This option will resolve variables.

-noStart specifies to not start the STAX Monitor after updating its properties.

-version displays the version of the STAX Monitor.

-help displays help information for the STAX Monitor.

Examples Starting the STAX Monitor Using Parameters

file:///C|/temp/staxug/staxug.html (96 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

Start the STAX Monitor specifying to monitor a current running STAX job with job ID 2:

java -jar STAXMon.jar -job 2

Start the STAX Monitor specifying to submit a new STAX job defined by Job Parameters File "C:\Documents and
Settings\Administrator\Test6":

java -jar STAXMon.jar -jobParms "C:\Documents and Settings\Administrator\Test6"

Update properties for the STAX Monitor, such as setting the STAX service machine to server1.ibm.com and start the STAX
Monitor:

java -jar STAXMon.jar -properties -staxMachine server1.ibm.com

Update properties for the STAX Monitor, such as setting the name of the STAX service to STAX2, but don't start the STAX
Monitor:

java -jar STAXMon.jar -properties -staxServiceName STAX2 -noStart

Setting STAX Monitor Properties

The first time you start the STAX Monitor, the "STAX Monitor Properties" window will be displayed (unless you specify the -
properties option when starting the STAX Monitor).

The "STAX Monitor Properties" window contains five main tabs to allow properties for the STAX Monitor to be specified.

1. "Machine Info" tab:

This tab allows you to specify the machine and service name of the STAX Service to which the STAX Monitor will be
communicating.

❍ Specify the machine and service name of the STAX Service machine:

a. STAX Machine - Specify the name of the machine where the STAX service is running. It defaults to the
local machine (the machine where you're running the STAX Monitor).

b. STAX Service Name - Specify the name used to register the STAX service. It defaults to STAX. Typically,
this value does not need to be changed.

❍ Displays the machine name and service name of the Event Service used by the STAX Service:

a. Event Machine - Displays the name of the Event Service machine used by the STAX service. It defaults to
the specified STAX Machine if it cannot be obtained by submitting a "LIST SETTINGS" request to the
specified STAX machine and STAX service. This field cannot be edited.

b. Event Service Name - Displays the name of the Event Service used by the STAX service. It defaults to
Event if it cannot be obtained by submitting a "LIST SETTINGS" request to the specified STAX machine
and STAX service. This field cannot be edited.

Following is an example of the "Machine Info" tab:

file:///C|/temp/staxug/staxug.html (97 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

2. "Options" tab:

This tab allows you to specify options for the STAX Monitor:

a. Update Process Monitor information every x seconds - Specify how frequently to refresh the Monitor information
for processes. The default is 1 (every second). The valid values are 0 or greater (0 indicates that the process monitor
information should never be displayed). Saved updates to the seconds value will apply to all new STAX Monitor
windows.

b. Update Elapsed Time every x seconds - Specify how frequently to refresh the elapsed times with the STAX
Monitor. The default is 1 (every second). The valid values are 0 or greater (0 indicates that the elapsed times should
never be displayed). Saved updates to the seconds value will apply to all new STAX Monitor windows.

c. Show Process <No STAX Monitor Information> message - Specify whether to show the "<No STAX Monitor
Information>" message for processes that have no Monitor Information available. The default is to not display this
message.

d. Limit number of Messages displayed to - Specify the limit of the number of messages that can be displayed in the
Messages table. The default is to limit the number of messages to 200 (only the most recent 200 messages will be
displayed in the Messages table).

Following is an example of the "Options" tab with its default values:

file:///C|/temp/staxug/staxug.html (98 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

3. "Sub-jobs" tab:

This tab allows you to specify whether to automatically monitor sub-jobs. Choose one of the following options:

a. Automatically monitor sub-jobs - A new STAX Monitor window will be opened for every sub-job that is started
by the current job.

b. Automatically monitor recommended sub-jobs - A new STAX Monitor window will be opened only for sub-jobs
whose <job> element attribute "monitor" is set to a true value. This is the default.

c. Never automatically monitor sub-jobs - Sub-jobs will never be automatically monitored.

Following is an example of the "Sub-jobs" tab:

file:///C|/temp/staxug/staxug.html (99 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

4. "Extensions" tab:

This tab allows you to display the monitor extensions that are registered with the STAX Monitor.

❍ Name - The name of the extension specified in the extension jar file's manifest.
❍ Version - The version of the extension, if provided in the extension jar file's manifest, or if not provided.
❍ Source - The source machine where the extension jar file containing this monitor extension resides. It will either be

the name of the STAX service machine or local if the extension was specified via the "Extension Jars" tab.
❍ Jar File Name - The name of the extension jar file that contains this monitor extension.
❍ Overrides - If not blank, the name of the extension jar file that contains an overridden monitor extension.
❍ Prereq - The minimum required version of the STAX Monitor that this extension requires, if provided in the

extension jar file's manifest, or if not provided.
❍ Description - A description of the extension jar file, if provided in the extension jar file's manifest, or if not provided

Following is an example of the "Extensions" tab with some monitor extensions registered:

file:///C|/temp/staxug/staxug.html (100 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

5. "Extension Jars" tab:

This tab allows you to specify any local extension jar files containing STAX Monitor extensions that you want to register.
Note that as of STAX V1.5.0, any STAX monitor extensions that are registered with the STAX service will be
automatically made available to the STAX Monitor. You should only specify local extension jar files that are not already
registered with the STAX service or that contain monitor extensions that you want to override (e.g. with a later version of
the extension).

❍ Local Extension Jar Files - Specify the fully-qualified names of jar files on the local system that contain monitor
extensions to be registered. You may specify as many extension jar files as needed. This is an optional field.

■ Click on the "Add" button to add a new extension jar file.
■ To delete an Extension Jar File that you already added, select it from the list and click on the "Delete" button.
■ Click on the "Delete All" button to delete all extension jar files in the list.

Following is an example of the "Extension Jars" tab with some extension jar files added:

file:///C|/temp/staxug/staxug.html (101 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

Click on the "Save" button to save any changes (or the "Cancel" button to end without saving changes). The next window that will
be displayed is the "STAX Job Monitor" window which contains a list of active jobs.

When you close and restart the STAX Monitor, the "STAX Properties" panel options last entered are restored.

Note that if this is is not the first time the STAX Monitor has been started, the "STAX Job Monitor" window is displayed first
instead of the "STAX Monitor Properties" window. To update the properties from the "STAX Job Monitor" window, select "File"
from the menu bar and then select "Properties..." in order to display the "STAX Monitor Properties" window. You must stop and
restart the STAX Monitor before the properties update will take place.

Displaying a List of Active Jobs

Following is an example of the "STAX Job Monitor" window with no jobs currently running or monitored:

file:///C|/temp/staxug/staxug.html (102 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

The "STAX Job Monitor" displays STAX jobs that are currently running on the specified STAX machine (as well as completed
jobs which are currently being monitored) in the "Active Jobs" table. Sub-jobs will appear as separate jobs and are also displayed
in the "STAX Job Monitor" window.

The File menu bar contains the following menu items:

● Properties... - This option displays the STAX Job Monitor Properties dialog.
● Submit New Job... - This option displays the Start New Job dialog.
● Resubmit Previous Job - This option resubmits that last job that was submitted.
● Exit - Selecting this option closes the STAX Job Monitor window.

The Display menu bar contains the following menu items:

● Display STAX Service Log - Selecting this option causes the STAX Service Log to be displayed.
● Display Selected Job's Log - Selecting this option causes the Job Log for the currently selected Job to be displayed.
● Display Selected Job's User Log - Selecting this option causes the Job User Log for the currently selected Job to be

displayed. If there are no entries in the Job User Log, then an informational message will be displayed to indicate that there
are no entries in the log.

● Display Job Log... - Selecting this option allows you to display the Job Log for any Job ID.
● Display Job User Log... - Selecting this option allows you to display the Job User Log for any Job ID. If there are no

entries in the Job User Log, then an informational message will be displayed to indicate that there are no entries in the log.

The "Active Jobs" table shows the following information for each active job:

● Job ID - Job number for an active job.
● Job Name - Name specified for the job, or <N/A> if no job name was specified when submitting the job for execution.
● Monitored - A green ball indicates that the job is currently being monitored. No green ball indicates that the job is currently

running but is not being monitored.
● Function - Name of the function that was called to start the job.
● Status - "Running" if the job is currently running or "Complete" if the job has completed but is still being monitored.
● Started - Date and time that the job was started. The format is YYYYMMDD-HH:MM:SS.
● Elapsed Time - The elapsed time that the job has been running (or if the status is complete, the elapsed time that the job

ran). The format is HH:MM:SS. If the elapsed time exceeds 99 hours, the format is HHH:MM:SS.
● Result - A "string" version of the Job Result.

file:///C|/temp/staxug/staxug.html (103 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

Following is the "STAX Job Monitor" window which shows four active jobs:

If you right-mouse-click on a job in the "Active Jobs" table, a popup menu is displayed with the following options:

● Show Monitor window - This option is only enabled if you are currently monitoring the selected job. Selecting this option
causes the "Job Monitor" window for this job to be brought to the foreground.

● Start Monitoring - This option is only enabled if you are not currently monitoring the selected job. Selecting this option
causes a Job Monitor window to be created for this job.

● Display STAX Service Log - This option allows you to view the STAX Service Log.
● Display Job Log - This option is always enabled. Selecting this option causes the Job Log to be displayed.
● Display Job User Log - This option is always enabled. Selecting this option causes the Job User Log to be displayed. If

there are no entries in the Job User Log, then an informational message will be displayed to indicate that there are no entries
in the log.

● Terminate Job - This option is enabled for all running Jobs. Selecting this option causes the job to be terminated.
Terminating a parent job will terminate any sub-jobs as well.

Submitting a New Job for Execution

The STAX Monitor provides a graphical user interface for submitting an EXECUTE request (as an alternative to issuing an
EXECUTE request via the command line). To submit a new job for execution from the "STAX Job Monitor" window, click on the
"Submit New Job..." button or select "File" from the menu bar and then select "Submit New Job...". A "Start Job Parameters"
window will be displayed.

Note that when you close and restart the STAX Monitor, the options on the "Start Job Parameters" panel last entered are restored.

The "STAX Job Parameters" window contains five main tabs to allow job execution parameters to be specified.

1. "Job Info" tab:

This tab allows you to specify the following job execution parameters:

❍ XML Job File - Specify the fully-qualified name of the XML file to be executed. You may select "local machine"

file:///C|/temp/staxug/staxug.html (104 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

and enter the local file name, or select "other machine" and specify the machine and file names. For XML files on
local machines, a "Browse..." button is provided which displays a "Select an XML Job Definition File" panel to
allow you to select the file.

❍ Job Name - Specify a name which identifies the job. This field is optional.

❍ Monitor - Select "Yes" or "No" to indicate whether you want to monitor the job you are submitting.

Following is an example of the "Start Job Parameters" panel with the "Job Info" tab selected and with some fields filled in:

2. "Function" tab:

This tab allows you to specify the start function parameter for the job:

❍ Start Function - Select "default" to start executing the job at its default start function. Select "other" to specify the
name of the function to be called to begin the job. If you select "default" and the XML document does not contain a
<defaultcall> element, you will get a STAXInvalidStartFunctionException if you try to execute the job. You can
pass parameters to the Start Function by specifying the parameters in the Arguments field.

Following is an example of the "Start Job Parameters" panel with the "Function" tab selected and with some fields filled in:

file:///C|/temp/staxug/staxug.html (105 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

3. "Scripts" tab:

This tab allows you to specify Script parameters:

❍ Scripts - Specify any Python code to be executed. You may specify as many Script parameters as needed. This is an
optional field. See the "EXECUTE" section for more information on a SCRIPT parameter.

Click on the "Add" button to add a new Script parameter. To edit a script already in the list, double click on the
script. To delete a Script parameter that you already added, select it from the list and click on the "Delete" button.
Click on the "Delete All" button to delete all Scripts in the list.

Following is an example of the "Start Job Parameters" panel with the "Scripts" tab selected and with some fields filled in:

file:///C|/temp/staxug/staxug.html (106 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

4. "Script Files" tab:

This tab allows you to specify Script File parameters:

❍ Script File Machine - Specify the machine where the script files are located. You may select one of the following:
■ Local machine - to indicate the script files are located on the local STAX Monitor machine.
■ XML Job File machine - to indicate the script files are located on the same machine specified for the XML

Job File. This is the default.
■ Other machine - to specify the name of the machine where the script files are located

❍ Script Files - Specify the fully-qualified names of script files that contain Python code to be executed. You may
specify as many script files as needed. This is an optional field. See the "EXECUTE" section for more information
on a SCRIPTFILE parameter.

■ Click on the "Add" button to add a new script file.
■ To edit the name of a script file already in the list, double click on the script file name.
■ To delete a script file that you already added, select it from the list and click on the "Delete" button.
■ Click on the "Delete All" button to delete all script files in the list.

Following is an example of the "Start Job Parameters" panel with the "Script Files" tab selected and with some fields filled
in:

5. "Log Options" tab:

This tab allows you to specify the log parameters:

❍ Clear Logs - Select "Enabled", "Disabled", or "Default" to indicate whether the STAX Job and Job User logs should
be deleted before the job is executed. Selecting "Enabled" specifies to delete the logs. Selecting "Disabled" specifies
not to delete the logs. Selecting "Default" specifies to use the STAX service setting for "Clear Logs".

❍ Log TC Elapsed Time - Select "Enabled, "Disabled", or "Default" to indicate whether to log the elapsed time in the
testcase summary records at the end of the STAX Job log and in a LIST TESTCASES request. Selecting "Enabled"

file:///C|/temp/staxug/staxug.html (107 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

specifies to log the elapsed time for testcases. Selecting "Disabled" specifies not to log the elapsed time for testcases.
Selecting "Default" specifies to use the STAX service setting for "Log TC Elapsed Time".

❍ Log TC Num Starts - Select "Enabled, "Disabled", or "Default" to indicate whether to log the number of times a
testcase is started in the testcase summary records at the end of the STAX Job log and in a LIST TESTCASES
request. Selecting "Enabled" specifies to log the number of testcase starts. Selecting "Disabled" specifies not to log
the number of testcase starst. Selecting "Default" specifies to use the STAX service setting for "Log TC Num
Starts".

❍ Log TC Start/Stop - Select "Enabled, "Disabled", or "Default" to indicate whether to log "Start" and "Stop" level
records each time a testcase begins or ends in the STAX Job log. Selecting "Enabled" specifies to log the testcase
"Start" and "Stop" records. Selecting "Disabled" specifies not to log the testcase "Start" and "Stop" records.
Selecting "Default" specifies to use the STAX service setting for "Log TC Start/Stop".

Following is an example of the "Start Job Parameters" panel with the "Log Options" tab selected:

Saving Execute Information in a Job Parameters File

You may save the information you specify to start a new job in a Job Parameters File. This is particularly useful when you plan on
submitting the job with the parameters specified (or similar parameters) multiple times. To save the job parameters in a file, select
"File" from the menu bar on the "Start Job Parameters" panel, and then select "Save As...". A "Save Current Job Parameters as"
panel will be displayed which lets you specify the name and directory of the Job Parameters File to create.

Later, to display the "Start Job Parameters" panel with the information you previously stored in a Job Parameters File, select "File"
from the menu bar on the "Start Job Parameters" panel, and then select "Open". An "Open Job Parameters File" window will be
displayed which lets you specify or browse for the Job Parameters File you wish to use. Or, if the Job Parameters File you wish to
use is one of the last ten Job Parameters Files specified, it can be selected directly when you select "File" from the menu bar on the
"Start Job Parameters" panel.

If you want to save any changed information for an existing Job Parameters File that you have opened, select "File" from the menu
bar on the "Start Job Parameters" panel, and then select "Save".

file:///C|/temp/staxug/staxug.html (108 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

Buttons on the "Start Job Parameters" Panel

The following buttons are available at the bottom of the "Start Job Parameters" panel:

● Submit New Job - click on this button to submit the job for execution. If the execution request is valid, the new job will
appear in the "Active Jobs" table on the "STAX Job Monitor" window.

If you selected "Yes" for the Monitor option, a "STAX Job Monitor" window for the job is then displayed.

● Test - click on this button to test whether the XML document is well-formed and valid and that the specified execution
options are valid. The job will not be submitted for execution.

● Job Wizard - click on this button to use the Job Wizard to help you select the starting function and to specify function
arguments for it. See the "Using the Job Wizard" section for more information on how to use the Job Wizard.

● Close - click on this button if you want to close the "STAX Job Parameters" window without submitting the job.

● Clear all Parameters - click on this button to clear all of the job execution parameters.

Using the Job Wizard

The STAX Monitor provides a Job Wizard to help you select the starting function for a job you want to execute and to help you
specify function arguments for it, if needed. The Job Wizard lists all of the available functions in a given STAX XML file, as well
as the arguments that can be specified for each function.

To use the Job Wizard, specify the fully-qualified name of the XML file to be executed in the "XML Job File" section of the
"STAX Job Parameters" dialog (and the machine where it resides if not on the local machine), and then click on the "Job
Wizard..." button.

Here is an example of the "STAX Job Wizard" dialog that will be displayed (when specifying
C:\STAF\services\libraries\STAXUtil.xml as the XML filename).

file:///C|/temp/staxug/staxug.html (109 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

In the "Functions" list you will see an alphabetical list of all the functions that are available within the specified XML file. If the
XML file designates a default starting function via the <defaultcall> element, then the default function will be shown as
"functionname (default)" in the list.

The function that is selected by default in the "Functions" list when the "STAX Job Wizard" dialog is first displayed is determined
as follows:

● If "default" was selected for the "Start Function" on the "Function" tab of the "STAX Job Parameters" dialog:
❍ If the XML file designates a default starting function via the <defaultcall> element, the default function is selected.

file:///C|/temp/staxug/staxug.html (110 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

❍ Otherwise, if the XML file does not contain a <defaultcall> element, the first function in the list is selected.
● Otherwise, if "other" is selected for the "Start Function" with a valid function name, that function is selected.

Select the function you want to be the starting function for the job. When you select a function from the list of functions, the
"Description for function <Function Name>" and "Arguments for function <Function Name>" sections of the "STAX Job Wizard"
dialog will be updated within the description and arguments for the selected function.

The "Description for function <Function Name>" section to the right of the list of functions displays additional information for that
function if a <function-prolog> or <function-description> element is provided for that function in the specified XML file.

If you click on the "Details..." button in the "Description for function <Function Name>" section, a new dialog will be shown
which includes not only the information from the function's <function-prolog>/<function-description> element, but also the
information from the function's <function-epilog> element, if provided in the specified XML file.

file:///C|/temp/staxug/staxug.html (111 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

The lower part of the Job Wizard dialog shows the arguments that can be specified for the selected function.

Arguments for the selected function will be one of the following types (the type will be highlighted in blue in the Job Wizard):

● None - No arguments may be specified
● Single - A single argument may be specified
● List - A list of arguments may be specified
● Map - A map of arguments may be specified
● Undefined - The function has defined no arguments (but the STAXArg argument may be specified)

When the "STAF" function is selected (as shown in the previous "STAX Job Wizard" dialog), it shows that it accepts a "List" of
three required arguments.

The following "STAX Job Wizard" panel would be shown if you selected the "STAXUtilCopyFiles" function from the "Functions"
list. It's "Arguments for function <Function Name>" section shows that it accepts a "Map" of arguments, both required and
optional arguments.

file:///C|/temp/staxug/staxug.html (112 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

If the Description for an argument does not fit in the column, it will end with "..." and the full description can be viewed by
clicking the "More..." button.

Required arguments will initially have a red background. After a value has been specified for the required argument, its
background will change to green. Optional arguments will have a green background.

To specify a value for a parameter, you may either click on the Edit... button for the argument, which will display a multi-line input
dialog, or click in the Value column for the argument and type in the single-line value (note that you must press Enter to save the
changes).

If the default value for an optional argument has been changed, and you wish to restore the default value, click on the "Default"
button.

After you have filled in all of the required arguments (and modified the values of any optional arguments), all the arguments will

file:///C|/temp/staxug/staxug.html (113 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

have a green background.

Here's the "STAX Job Wizard" panel with function "STAF" selected after values have been entered for all of its required
arguments:

To see an example of the XML syntax for calling the selected function, click on the "Preview XML..." button.

file:///C|/temp/staxug/staxug.html (114 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

To save the function and argument values you have specified to the STAX Job Parameters dialog, click on the "Save" button. A
confirmation dialog will be displayed.

The values you specified will be saved in the STAX Job Parameters dialog.

Note that after you save the arguments in the Job Wizard, you will no longer be able to directly edit the arguments in the STAX
Job Parameters dialog. If you re-open the Job Wizard, all the arguments you specified will automatically be filled in, and you can
modify them. If you wish to update the arguments in the STAX Job Parameters dialog, you must click on the "Clear" button and
manually specify the arguments.

file:///C|/temp/staxug/staxug.html (115 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

Monitoring a Job

The following is an example of the "STAX Job Monitor" window for a job:

The File menu bar contains the following menu items:

● Exit - This option is always enabled. Selecting this option closes the STAX Job Monitor window.

The Display menu bar contains the following menu items:

● Display Job Log - This option is always enabled. Selecting this option causes the Job Log to be displayed.
● Display Job User Log - This option is always enabled. Selecting this option causes the Job User Log to be displayed. If

file:///C|/temp/staxug/staxug.html (116 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

there are no entries in the Job User Log, then an informational message will be displayed to indicate that there are no entries
in the log.

The View menu bar contains the following menu items, in three sections, where each section represents the panel where the item
will be displayed. The first section corresponds to tabs that will show up in the top-left panel. The second section corresponds to
tabs that will show up in the top-right panel. The third section corresponds to tabs that will show up in the bottom panel.

● Active Job Elements
● Active Processes
● Active STAFCmds
● Sub-jobs
● TestCase Info
● Messages
● Current Selection

The "STAX Job Monitor" window contains seven main tabs:

1. Active Job Elements:

This tab displays the currently executing <block>, <process>, <stafcmd>, and <job> elements for a job in a tree format, in
order to show the hierarchy of the currently executing elements.

For each <process>, <stafcmd>, and <job> element represented in the tree, the elapsed time that the process, stafcmd, or job
element has been running is displayed to the right of the process, stafcmd, or job name in parenthesis. The format for
displaying the elapsed time is HH:MM:SS. If the elapsed time exceeds 99 hours, the format is HHH:MM:SS.

For each <process> element represented in the tree, if the process generates STAF Monitor Service messages (see section
8.8 of the STAF User's Guide), the current monitor message is displayed to the right of the process name and elapsed time.
The monitor information is periodically refreshed while the process is running. If the process has not written any STAF
Monitor information, the text "No STAF Monitor information available" is displayed.

file:///C|/temp/staxug/staxug.html (117 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

If you right-mouse-click on a block in the "Active Job Elements" panel, a popup menu is displayed with the options "Hold",
"Release", and "Terminate" which allows you to control the execution of the block. Holding/Releasing a block which
contains sub-jobs will not hold/release the sub-jobs. Terminating a block which contains sub-jobs will terminate the sub-
jobs.

The color of the block icon for each block indicates the state of the block:

❍ A block that is currently running has a green block icon.
❍ A block that has been held has a red block icon.
❍ A block that is held by a parent block has a yellow block icon.

If you right-mouse-click on a Sub-job in the "Active Job Elements" panel, a popup menu is displayed with the options
"Start Monitoring", "Display Job Log", "Display Job User Log", and "Terminate Job".

2. Active Processes:

This tab displays the currently executing <process> elements for a job in a table.

For each <process> the elapsed time (HH:MM:SS) that the process element has been running is displayed in the table. The
format for displaying the elapsed time is HH:MM:SS. If the elapsed time exceeds 99 hours, the format is HHH:MM:SS.

For each <process> element represented in the table, if the process generates STAF Monitor Service messages, the current
monitor message is displayed in the "Status" column. The monitor information is periodically refreshed while the process is
running.

3. Active STAFCmds:

file:///C|/temp/staxug/staxug.html (118 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

This tab displays the currently executing <stafcmd> elements for a job in a table.

For each <stafcmd> the elapsed time (HH:MM:SS) that the stafcmd element has been running is displayed in the table. The
format for displaying the elapsed time is HH:MM:SS. If the elapsed time exceeds 99 hours, the format is HHH:MM:SS.

Note that this tab is not displayed by default. To view this tab, select the "View" menu bar and then select "Active
STAFCmds".

4. Sub-jobs:

This tab displays information about both active and completed sub-jobs.

If you right-mouse-click on a Sub-job in the "Sub-jobs" tab, a popup menu is displayed with the options "Start Monitoring",
"Display Job Log", "Display Job User Log", and "Terminate Job".

5. TestCase Info:

file:///C|/temp/staxug/staxug.html (119 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

This tab displays the following information for each testcase:

❍ Name of each <testcase> element that has been executed

❍ Cummulative number of its passes from when the job started executing

❍ Cummulative number of its fails from when the job started executing

❍ Cummulative duration (e.g. committed elapsed time) for the testcase since the beginning of the job. The format is
HH:MM:SS (or HHH:MM:SS if over 99 hours) or <Pending> if the testcase has not yet ended at least once yet via a
</testcase> or STOP TESTCASE request.

If a testcase is started more than once via a <testcase> element or a START TESTCASE request, the elapsed times
for each testcase started are accumulated. So, it is possible that the elapsed time for a testcase is more than the
elapsed time for a job if the same testcase is run in parallel multiple times.

If you start monitoring an existing job and "Log TC Elapsed Time" was not enabled for the job, the duration for
testcases which have already been started appears as ??:??:?? until a status for the testcase is recorded (or the testcase
ends).

❍ Number of times the testcase has been started since the beginning of the job (via a <testcase> element or via a
START TESTCASE request or via UPDATE TESTCASE FORCE request)

If you start monitoring an existing job and "Log TC Num Starts" was not enabled for the job, the number of starts for
testcases which have already been started appears as ? until a status for the testcase is recorded (or the testcase ends).

❍ Last status message if provided via a <tcstatus> element or via an UPDATE TESTCASE request.

Note that at least one testcase status (pass or fail) must be recorded via a <tcstatus> element in order for a testcase to appear

file:///C|/temp/staxug/staxug.html (120 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

in the "Testcase Information" panel (if the testcase's mode is not set to 'strict').

6. Messages:

This tab displays the messages (and their timestamps) from each message sent by a <message> element in the XML
document. The STAX service can also generate messages via its default signal handlers.

7. Current Selection:

This tab shows more details about an element displayed in the "Active Job Elements", "Active Processes", "Active
STAFCmds", or "Sub-jobs" panels when you click on that element in the panel.

Notes:

● When you start monitoring a job that is already executing, the "Active Job Elements", "Active Processes", "Active
STAFCmds", and "TestCase Info" tabs will show the same information as if you had been monitoring the job from its
beginning. However, the "Messages" tab only displays messages that have occurred after you started monitoring the job.

● All of the tables in the Job Monitor are sortable:
❍ To sort the table in ascending order by a column, click on the table's column header for that column.
❍ To sort the table in descending order by a column, hold the Shift key while clicking on the table's column header for

that column.

Displaying a Job Log

There are several menu options to display Job Logs. Here is an example of the dialog that is shown when a Log is displayed.

file:///C|/temp/staxug/staxug.html (121 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

The File menu bar contains the following menu items:

● Exit - This option closes the Job Log.

The View menu bar contains the following menu items:

● Refresh - This option refreshes the Job Log (the latest log information will be queried and the table will be updated).

The Levels menu bar contains the following menu items (note that when any of the level options are changed, the information in
the table will be refreshed with the latest information from the Log):

● All - Selecting this option controls whether all of the log levels will be displayed in the table.
● Fatal - Selecting this option controls whether Fatal log messages will be displayed in the table.
● Error - Selecting this option controls whether Error log messages will be displayed in the table.
● Warning - Selecting this option controls whether Warning log messages will be diplayed in the table.
● Info - Selecting this option controls whether Info log messages will be displayed in the table.
● Trace - Selecting this option controls whether Trace log messages will be displayed in the table.
● Trace2 - Selecting this option controls whether Trace2 log messages will be displayed in the table.
● Trace3 - Selecting this option controls whether Trace3 log messages will be displayed in the table.
● Debug - Selecting this option controls whether Debug log messages will be displayed in the table.
● Debug2 - Selecting this option controls whether Debug2 log messages will be displayed in the table.
● Debug3 - Selecting this option controls whether Debug3 log messages will be displayed in the table.
● Start - Selecting this option controls whether Start log messages will be displayed in the table.
● Stop - Selecting this option controls whether Stop log messages will be displayed in the table.
● Pass - Selecting this option controls whether Pass log messages will be displayed in the table.
● Fail - Selecting this option controls whether Fail log messages will be diplayed in the table.
● Status - Selecting this option controls whether Status log messages will be displayed in the table.

file:///C|/temp/staxug/staxug.html (122 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

● User1 - Selecting this option controls whether User1 log messages will be displayed in the table.
● User2 - Selecting this option controls whether User2 log messages will be displayed in the table.
● User3 - Selecting this option controls whether User3 log messages will be displayed in the table.
● User4 - Selecting this option controls whether User4 log messages will be displayed in the table.
● User5 - Selecting this option controls whether User5 log messages will be displayed in the table.
● User6 - Selecting this option controls whether User6 log messages will be displayed in the table.
● User7 - Selecting this option controls whether User7 log messages will be displayed in the table.
● User8 - Selecting this option controls whether User8 log messages will be displayed in the table.

STAX Logging
STAX uses the STAF Log Service for logging, so the Log Service must be registered in order for STAX logs to be created.

There are three types of STAX logs:

● STAX service log - This log contains messages generated by the STAX Service for all jobs. This log contains a start and
stop message for each STAX Job. The job start message includes additional information about the job such as job ID, XML
file name, machine name, starting function, job name, and script parameters, if any.

● STAX job logs - There is a STAX job log generated by the STAX Service for each STAX job ID. Each log contains
messages for the job such as a start and stop message for the job. In addition, a message is logged if:

❍ A job is held, released, or terminated.

❍ A signal is raised by the STAX service during job execution and the default signal handler is invoked.

❍ A <tcstatus> element specifies a message, it is logged.

❍ If "Log TC Start/Stop" is enabled for the job and a <testcase> element is encountered or a START request for a
testcase is successfully executed. This logs a message with level "Start" and the format of the message text is:

Testcase: <Testcase Name>

❍ If "Log TC Start/Stop" is enabled for the job and a </testcase> element is encountered or a STOP request for a
testcase is successfully executed. This logs a message with level "Stop" and the format of the message text is:

Testcase: <Testcase Name>, ElapsedTime: <Elapsed Time>"

❍ A job terminates, a summary of the number of times each testcase passed or failed is logged with level "Status". If
"Log TC Elapsed Time" is enabled for the job, the elapsed time for each testcase is also logged. If "Log TC Num
Starts" is enabled for the job, the number of times each testcase was started is also logged. The format of the
message text is:

Testcase: <Testcase Name>, Pass: <NumPasses>, Fail: <NumFails>[, ElapsedTime:
<ElapsedTime>][, NumStarts: <NumStarts>]

Notes:

file:///C|/temp/staxug/staxug.html (123 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

1. If the default mode is specified for a testcase for which no passes or fails were recorded, no summary for that
testcase is logged.

2. If a testcase is started more than once via a <testcase> element or a START testcase request, the elapsed
times for each testcase started are accumulated. So, it is possible that the elapsed time for a testcase is more
than the elapsed time for a job if the same testcase is run in parallel multiple times.

3. The format for elapsed time is HH:MM:SS or if the elapsed time exceeds 99 hours, the format is:
HHH:MM:SS.

❍ A job terminates, a summary of the job's total number of testcases, passes, and fails is logged.

● STAX job user logs - If a STAX job uses the <log> element, then a STAX job user log is generated for the job ID. The
messages specified by the <log> elements are written to this log. STAF variables are allowed in the message. However,
they will only be resolved if one of the STAF Log service options which specify to resolve variables is set.

Note: If a STAX job contains a <script> element which consists of more than 100K of Python code, you may want to increase the
maximum log record size on the STAX service machine. When a STAXPythonEvaluationError signal is raised, a message is
written to the STAX job log which includes all the Python code contained in the <script> element where the error occurred,
followed by the line number and a description of the problem. If you do not specify a larger maximum record size for the Log
service, the message logged will be truncated at 100,000 bytes (the default maximum record size for the Log service). To increase
the maximum log record size, see the "Log Service" section in the STAF User's Guide for a description of how to specify a
MAXRECORDSIZE parameter when registering the Log Service.

Listing/Querying STAX Service Logs

The STAX logs are machine logs. The names of the STAX logs begin with the STAX service name in uppercase (e.g. STAX). To
get a list of all the logs on a STAX service machine named "stax1", use the following STAF log list request. The log files listed
whose name begins with STAX are the STAX logs. For example:

STAF stax1 LOG LIST MACHINE stax1

An example of output from listing STAX logs is:

Response

STAX_Service............................ 20010718-19:58:22 Size=3109
STAX_Job_1.............................. 20010718-19:58:30 Size=3293
STAX_Job_1_User......................... 20010718-15:31:18 Size=2860
STAX_Job_2.............................. 20010718-19:58:22 Size=3676
STAX_Job_3.............................. 20010718-16:17:06 Size=1924
STAX_Job_3_User......................... 20010718-16:17:06 Size=1064
STAX_Job_4.............................. 20010718-21:15:12 Size=656

To query a STAX service log, use the following STAF log query machine request (assuming STAX is the registered name for the
service):

STAF stax1 LOG QUERY MACHINE stax1 LOGNAME STAX_Service

An example of the output from a query of a STAX service log is:

Response

file:///C|/temp/staxug/staxug.html (124 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

20010718-10:30:51|stax1|6|STAX/Job/1|Start|JobID: 1, File: d:/stax/MyTest1.xml,
Machine: machA.austin.ibm.com, Function: Main, JobName: Test1Job
20010718-10:31:00|stax1|9|STAX/Job/2|Start|JobID: 2, File: d:/stax/MyTest2.xml,
Machine: machB.austin.ibm.com, Function: FunctionA, JobName:
20010718-10:31:18|stax1|6|STAX/Job/1|Stop|JobID: 1
20010718-10:31:22|stax1|9|STAX/Job/2|Stop|JobID: 2
20010718-11:16:45|stax1|16|STAX/Job/3|Start|JobID: 3, File: d:/stax/MyTest1.xml,
 Machine: machA.austin.ibm.com, Function: Main, JobName: Test1Job
20010718-11:17:04|stax1|16|STAX/Job/3|Stop|JobID: 3
20010718-14:56:25|stax1|8|STAX/Job/1|Start|JobID: 1, File: d:/stax/J13Test.xml,
Machine: machC.austin.ibm.com, Function: J13auto, JobName:
20010718-14:56:28|stax1|8|STAX/Job/1|Stop|JobID: 1
20010718-14:57:54|stax1|10|STAX/Job/2|Start|JobID: 2, File: d:/stax/Looper.xml,
Machine: machA.austin.ibm.com, Function: MainLoop, JobName: LoopJob
20010718-14:58:21|stax1|10|STAX/Job/2|Stop|JobID: 2

Querying STAX Job Logs

To query a STAX job log for Job ID 22, use the following STAF log query machine request (assuming stax1 is the STAX service
machine and STAX is the registered name for the service):

STAF stax1 LOG QUERY MACHINE stax1 LOGNAME STAX_Job_22

An example of the output from a query of a STAX job log is:

Response

20031027-18:26:13|stax1|248|STAX/Job/22|Start|JobID: 22, File: C:\STAF\services\
samples\sample1.xml, Machine: lucas.austin.ibm.com, Function: MonitorTest, Args:
 { 'duration': '2m', 'MachList': ['local',], 'STAXJarFile': '{STAF/Config/STAFR
oot}/services/STAXMon.jar' }, JobName: Sample 1, ScriptFile: c:\tests\pyCode1.py
, ScriptFileMachine: lucas.austin.ibm.com
20031027-18:26:13|stax1|248|STAX/Job/22|Info|Holding block: main
20031027-18:26:14|stax1|248|STAX/Job/22|Info|Received RELEASE BLOCK main request
20031027-18:26:14|stax1|248|STAX/Job/22|Info|Releasing block: main
20031027-18:27:01|stax1|248|STAX/Job/22|Error|STAXProcessStartError signal raise
d. Continuing job.
 with location=machA request=start command :4:java not
ify onend parms :44:com.ibm.staf.service.stax.TestProcess 3 4 99 env :104:CLASSP
ATH=c:\dev\sf\rel\win32\staf\retail/services/STAXMon.jar{STAF/Config/Sep/Path}{S
TAF/Env/ClassPath} sameconsole
RC=16 STAFResult=select() timeout: 0
20031027-18:27:01|stax1|248|STAX/Job/22|Fail|Testcase: Timer.local, Pass: 2, Fai
l: 1, Last Status: fail, Message: value=16. Expected 0.
20031027-18:27:26|stax1|248|STAX/Job/22|Fail|Testcase: Timer.local, Pass: 2, Fai
l: 2, Last Status: fail, Message: value=100. Expected 0.
20031027-18:28:14|stax1|248|STAX/Job/22|Pass|Testcase: Timer, Pass: 1, Fail: 0,
Last Status: pass, Message: Timer ran for 120 seconds
20031027-18:28:14|stax1|248|STAX/Job/22|Status|Testcase: Timer, Pass: 1, Fail: 0
, ElapsedTime: 00:02:00, NumStarts: 1
20031027-18:28:14|stax1|248|STAX/Job/22|Status|Testcase: Timer.local, Pass: 4, F
ail: 2, ElapsedTime: 00:02:00, NumStarts: 2

file:///C|/temp/staxug/staxug.html (125 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

20031027-18:28:14|stax1|248|STAX/Job/22|Status|Testcase Totals: Tests: 2, Pass:
5, Fail: 2
20031027-18:28:14|stax1|248|STAX/Job/22|Stop|JobID: 22

To query a STAX job log for Job ID 2, but just its last "Testcase Totals:" entry, use the following STAF log query machine request
(assuming stax1 is the STAX service machine and STAX is the registered name for the service):

STAF stax1 LOG QUERY MACHINE stax1 LOGNAME STAX_Job_2 CONTAINS "Testcase Totals:"
LAST 1

An example of the output from this query of a STAX job log is:

Response

20010718-14:58:21|stax1|10|STAX/Job/2|Status|Testcase Totals: Tests: 3, Pass: 2,
Fail: 7

Querying STAX Job User Logs

To query a STAX job user log for Job ID 3, use the following STAF log query machine request (assuming stax1 is the STAX
service machine and STAX is the registered name for the service):

STAF stax1 LOG QUERY MACHINE stax1 LOGNAME STAX_Job_3_User

An example of the output from a query of a STAX job user log is:

Response

20010718-11:16:46|stax1|16|STAX/Job/3|Start|Starting the STAXMonitor test on mac
hine machA
20010718-11:16:51|stax1|16|STAX/Job/3|Info|TestProcess on machine machA RC = 0
20010718-11:16:51|stax1|16|STAX/Job/3|Info|Delaying 1453 on machine machA
20010718-11:16:53|stax1|16|STAX/Job/3|Info|Machine machA is running STAF Version
 2.1.0
20010718-11:16:57|stax1|16|STAX/Job/3|Info|TestProcess on machine machA RC = 1
20010718-11:17:04|stax1|16|STAX/Job/3|Stop|Finished the STAXMonitor Test on mach
ine machA

Displaying STAX Logs via a GUI

You can use the STAX Monitor Java application to display STAX logs in a formatted, graphical representation. Refer to the
"STAX Monitoring" section for more information on how to display a STAX log.

Enabling/Disabling Testcase Logging

Here's an example of the contents of the STAX Job Log for a job run with "Log TC Elapsed Time", "Log TC Num Starts", and
"Log TC Start/Stop" enabled. Note that "Start" and "Stop" records are logged each time a testcase begins and ends and the elapsed
time and number of starts for each testcase are provided in the "Status" records written at the end of the job. This also shows how
the log is displayed via the STAX Monitor.

file:///C|/temp/staxug/staxug.html (126 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

STAX Variables
The following variables are set in Python during Job Execution by the STAX service and can be referenced by your job definition.
However, do not change their values.

● RC
❍ Description: the return code from a <stafcmd>, <process> element, or <timer> element
❍ Assigned: each time a <process>, <stafcmd>, or <timer> element completes
❍ Type: numeric. Note that the actual return code from a <process> element (if an error starting the process did not

occur) a PyLong numeric type (e.g 0L, 25L). In other cases, the return code will be a PyInteger type.

● STAFResult
❍ Description: the result from a <stafcmd>, <process>, or <job> element
❍ Assigned: each time a <stafcmd>, <process>, or <job> element completes
❍ Type: string

● STAFRC
❍ Description: the alias for the imported com.ibm.staf.STAFResult Java class. It contains constant definitions for

STAF return codes (e.g. STAFRC.Ok, STAFRC.DoesNotExist)
❍ Assigned: at the beginning of the execution of a STAX job

file:///C|/temp/staxug/staxug.html (127 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

❍ Type: Java class com.ibm.staf.STAFResult

● STAXResult
❍ Description: the result from a function <call>, <call-with-list>, <call-with-map>, <process>, <job>, or <import>

element
❍ Assigned: each time a <call>, <call-with-list>, <call-with-map>, <process>, <job>, or <import> element completes
❍ Type: anything (integer, string, variable, list, nothing, etc.)

● STAXJobID
❍ Description: the Job ID of the STAX job
❍ Assigned: at the beginning of the execution of a STAX job
❍ Type: numeric

● STAXSubJobID
❍ Description: the Job ID of the STAX sub-job (executed via a <job> element)
❍ Assigned: at the beginning of the execution of a STAX sub-job
❍ Type: numeric

● STAXJobName
❍ Description: the name of the job specified on the EXECUTE request
❍ Assigned: at the beginning of the execution of a STAX job
❍ Type: string

● STAXJobXMLFile
❍ Description: the fully qualified name of the file containing the XML document; this is the value of the FILE

parameter, if specified, on the EXECUTE request; otherwise, if DATA <xml data> was specified on the EXECUTE
request instead of FILE, it is set to "<inline data>"

❍ Assigned: at the beginning of the execution of a STAX job
❍ Type: string

● STAXJobXMLMachine
❍ Description: the name of the machine where the file containing the XML document is located; this is the value of the

MACHINE parameter, if specified, on the EXECUTE request; if not specified, then it is the name of the machine
submitting the EXECUTE request

❍ Assigned: at the beginning of the execution of a STAX job
❍ Type: string

● STAXJobSourceMachine
❍ Description: the name of the machine submitting the EXECUTE request
❍ Assigned: at the beginning of the execution of a STAX job
❍ Type: string

● STAXJobSourceHandle
❍ Description: the handle of the process submitting the EXECUTE request
❍ Assigned: at the beginning of the execution of a STAX job
❍ Type: numeric

● STAXJobSourceHandleName
❍ Description: the name of the handle of the process submitting the EXECUTE request
❍ Assigned: at the beginning of the execution of a STAX job
❍ Type: string

file:///C|/temp/staxug/staxug.html (128 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

● STAXJobScriptFileMachine
❍ Description: the name of the machine where the script files are located. This is the value of the

SCRIPTFILEMACHINE parameter, if specified, on the EXECUTE request. If the SCRIPTFILEMACHINE
parameter was not specified on an EXECUTE request, it defaults to the value specified for the the MACHINE option
on the EXECUTE request. If the MACHINE option was not specified, it assumes the script file(s) are on the
machine submitting the STAX EXECUTE request.

❍ Assigned: at the beginning of the execution of a STAX job
❍ Type: string

● STAXJobScriptFiles
❍ Description: a list of names of script files; this is a list of the values of the SCRIPTFILE parameter(s), if specified,

on the EXECUTE request; if no SCRIPTFILE parameters are specified, then it is an empty list
❍ Assigned: at the beginning of the execution of a STAX job
❍ Type: PyArray

● STAXJobStartDate
❍ Description: the date the job started in format yyyymmdd
❍ Assigned: at the beginning of the execution of a STAX job
❍ Type: string

● STAXJobStartTime
❍ Description: the time the job started in format hh:mm:ss
❍ Assigned: at the beginning of the execution of a STAX job
❍ Type: string

● STAXJobStartFunctionName
❍ Description: the name of the starting function for the STAX job
❍ Assigned: at the beginning of the execution of a STAX job
❍ Type: string

● STAXJobStartFunctionArgs
❍ Description: the arguments passed to the starting function for the STAX job (in string format)
❍ Assigned: at the beginning of the execution of a STAX job
❍ Type: string

● STAXJobUserLog
❍ Description: a STAFLog wrapper object for the STAX Job User Log. You can use this object to log to the STAX Job

User Log from Python code, instead of using the <log> element, which cannot be included in a <script> element. For
example, within a <script> element, could do the following to log a message of level "info" in the STAX Job User
Log:

 res = STAXJobUserLog.log('info', 'Here is an informational message')

Note that the log method on this object requires two parameters: the log level string and the message. The log
method returns a STAFResult object from which you can reference the return code and the result (e.g. res.rc and
res.result).

❍ Assigned: at the beginning of the execution of a STAX job
❍ Type: STAFLog wrapper object

● STAXThreadID
❍ Description: the Thread ID currently running
❍ Assigned: at the creation of a new Thread. For example, a new thread is created when a job begins execution, when

each task element contained in a <parallel> element is executed, and when each iteration of the task element

file:///C|/temp/staxug/staxug.html (129 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

contained in a <paralleliterate> element is executed.
❍ Type: numeric

● STAXCurrentBlock
❍ Description: the name of the current block running in a thread
❍ Assigned: when entering a block (e.g. upon encountering a <block name="..."> element and when entering the

default 'main' block).
❍ Type: string

● STAXCurrentTestcase
❍ Description: the name of the current testcase running in a thread
❍ Assigned: when entering a testcase (e.g. upon encountering a <testcase name="..."> element). If no testcase is

currently running, then it is assigned None (a special object provided by Python which serves as an empty
placeholder, much like null in Java).

❍ Type: string

● STAXProcessHandle
❍ Description: the process handle
❍ Assigned: when the process has started executing. Only the <process-action> element can use this variable to access

the handle for its process.
❍ Type: string

● STAXServiceName
❍ Description: the registered name of the STAX service executing the job
❍ Assigned: at the beginning of the execution of a STAX job
❍ Type: string

● STAXServiceMachine
❍ Description: the effective machine name of the STAX service machine (the local machine)
❍ Assigned: at the beginning of the execution of a STAX job
❍ Type: string

● STAXEventServiceName
❍ Description: the registered name of the Event service (to which the STAX service submits requests)
❍ Assigned: at the beginning of the execution of a STAX job
❍ Type: string

● STAXEventServiceMachine
❍ Description: the machine name of the Event service machine
❍ Assigned: at the beginning of the execution of a STAX job
❍ Type: string

● STAXLogTCElapsedTime
❍ Description: a flag indicating if "Log TC Elapsed Time" is enabled or disabled for the STAX job. 1 means enabled;

0 means disabled.
❍ Assigned: once at the beginning of the execution of a STAX job
❍ Type: numeric (0 or 1)

● STAXLogTCNumStarts
❍ Description: a flag indicating if "Log TC Num Starts" is enabled or disabled for the STAX job. 1 means enabled; 0

means disabled.
❍ Assigned: once at the beginning of the execution of a STAX job
❍ Type: numeric (0 or 1)

file:///C|/temp/staxug/staxug.html (130 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

● STAXLogTCStartStop
❍ Description: a flag indicating if "Log TC Start/Stop" is enabled or disabled for the STAX job. 1 means enabled; 0

means disabled.
❍ Assigned: once at the beginning of the execution of a STAX job
❍ Type: numeric (0 or 1)

● STAXArg
❍ Description: the arguments passed when calling a function that did not define its arguments (via <function-list-args>,

<function-map-args>, etc.)
❍ Assigned: each time a <call>, <call-with-list>, <call-with-map> element begins if the function being called did not

define its arguments
❍ Type: anything (integer, string, variable, list, nothing, etc.)

STAX Extensions
You can add extensions to the STAX service. For example, you can write a STAX service extension to define one or more new
elements and you can write a STAX monitor extension to define a new plug-in view that can be displayed via the STAX Monitor.
See the "STAX Extensions Developer's Guide" for more information on how to write extensions.

Registering STAX Service Extensions

This section discusses how to register STAX service extensions when configuring the STAX service. STAX service extensions
allow you to extend the STAX DTD and define additional XML elements that can be used in STAX jobs.

STAX extensions are registered via the PARMS option when configuring the STAX service (either in the STAF.cfg file or
dynamically using a SERVICE ADD request). Each STAX extension is provided in a jar file. You can specify the STAX extension
jar files that you want to register using an EXTENSIONXMLFILE parameter or using EXTENSION parameters (or using an
EXTENSIONFILE parameter, but this parameter has been deprecated).

Syntax

SERVICE <Name> LIBRARY JSTAF EXECUTE <STAX Jar File Name>
 [OPTION <Name[=Value]>]...
 [PARMS <"> [EVENTSERVICEMACHINE <EventMachine>]
 [EVENTSERVICENAME <EventName>]
 [NUMTHREADS <NumThreads>]
 [PROCESSTIMEOUT <ProcessTimeout>]
 [CLEARLOGS <Enabled | Disabled>]
 [LOGTCELAPSEDTIME <Enabled | Disabled>]
 [LOGTCNUMSTARTS <Enabled | Disabled>]
 [LOGTCSTARTSTOP <Enabled | Disabled>]
 [EXTENSIONXMLFILE <Extension XML File> |
 EXTENSIONFILE <Extension Text File>]
 [EXTENSION <Extension Jar File>...
 <">]

EXTENSIONXMLFILE specifies the fully-qualified name of an extension XML file that defines all of the STAX extensions to be

file:///C|/temp/staxug/staxug.html (131 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

registered in an XML format. This XML file must conform to the stax-extensions DTD. Refer to the "Creating a STAX Extensions
XML File" section for more information on how to create an extension xml file. We recommend using the
EXTENSIONXMLFILE parameter to register STAX extensions as it provides the ability to specify parameters for extensions (if
the extension supports parameters) and to include or exclude specific elements provided in the extension jar file. This option
resolves STAF variables.

EXTENSION specifies the fully-qualified name of an extension jar file that defines a STAX extension to be registered. You may
specify multiple EXTENSION parameters. You may optionally specify to only register some of the elements provided in the
extension jar file by specifying one or more spaces after the jar file name, a #, one or spaces, and then a space separated list of the
element names that to be registered. The format is:

<Jar File Name> [# elementName1 elementName2 ...]

If no elements are specified when registering the extension, all of the elements with staf/stax/extension/<element> entries in the
extension jar file's manifest file will be registered. This option resolves STAF variables.

EXTENSIONFILE specifies the fully-qualified name of a text file that contains entries where each line has the same format as
described above for the EXTENSION parameter. This parameter has been deprecated as of STAX V1.5.0. Use the
EXTENSIONXMLFILE parameter instead. This option resolves STAF variables.

Examples

Goal: Configure the STAX service and register all the STAX extensions specified in an extension xml file named extensions.xml
in the services directory off the STAF root directory.

SERVICE STAX LIBRARY JSTAF EXECUTE {STAF/Config/STAFRoot}/services/STAX.jar \
 OPTION J2=-Xmx512 \
 PARMS "EXTENSIONXMLFILE {STAF/Config/STAFRoot}/services/extensions.xml"

Goal: Configure the STAX service using the EXTENSION option to specify extension jar files C:/STAXExt/ExtDelay.jar and
C:/STAXExt/MyExt.jar.

SERVICE STAX LIBRARY JSTAF EXECUTE C:/STAF/services/STAX.jar \
 OPTION J2=-Xm512 \
 PARMS "EXTENSION C:/STAXExt/ExtDelay.jar EXTENSION C:/STAXExt/MyExt.jar"

Goal: Configure the STAX service using the EXTENSION option to specify extension jar file C:/STAXExt/ExtDelay.jar and to
only register the ext-delay and ext-wait elements). Note that double quotes are needed around the value specified for EXTENSION
because the value contains spaces. Note also that because these double quotes are within the double quotes specified for the
PARMS option, they need to be escaped (using \).

SERVICE STAX LIBRARY JSTAF EXECUTE {STAF/Config/STAFRoot}/services/STAX.jar \
 PARMS "EXTENSION \"C:/STAXExt/ExtDelay.jar # ext-delay ext-wait\""

Goal: Configure the STAX service using the EXTENSIONFILE option to specify the name of a text file, extensions.txt, located in
the services directory off the STAF root directory. This text file contains the names of extension jar files to be registered.

SERVICE STAX LIBRARY JSTAF EXECUTE {STAF/Config/STAFRoot}/services/STAX.jar \
 PARMS "EXTENSIONFILE {STAF/Config/STAFRoot}/services/extensions.txt"

Creating a STAX Extensions XML File

file:///C|/temp/staxug/staxug.html (132 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

A STAX extensions XML file defines the STAX extensions to be registered when configuring the STAX service. This XML file
must comply with the STAX Extensions document type definition (DTD) shown in appendix "STAX Extensions DTD". Note that
the stax-extensions DTD is provided as part of the STAX zip/tar file (called ext/stax-extensions.dtd).

This section describes how to create a STAX Extensions XML file.

The first line in a STAX Extensions XML file should start with an XML declaration. This indicates the document is written in
XML and specifies the XML version, the language encoding for the document, and indicates that the document refers to an
external DTD (standalone="no").

The second line in a STAX Extensions XML file should be the document type declaration. This is used to indicate the DTD used
for the document. It defines the name of the root element (stax-extensions), and the DTD to be used. STAX checks the syntax of
XML documents using a validating XML parser to verify that the document complies with the DTD. Note that DTDs are all about
specifying the structure and syntax of XML documents (not their content).

So, the first two lines in a STAX Extensions XML file should look like:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE stax-extensions SYSTEM "stax-extensions.dtd">

stax-extensions

A STAX Extensions XML file must contain a root element which contains all other elements in the document. The root element of
a STAX Extensions XML file is stax-extensions.

The stax-extensions element consists of one or more extension elements,

extension

The extension element is used to specify a STAX extension to register. All extension elements are contained within the root stax-
extensions element.

The extension element has one attribute:

● jarfile - specifies the fully-qualified name of the STAX extension jar file to be registered. This attribute is required. This
attribute will resolve STAF variables.

The extension element can optionally contain the following sub-elements:

● parameter - specifies the name and value for a parameter to this STAX extension. Any number of parameter elements may
be specified for an extension. See the extension provider's documentation for each extension to see what parameters it
supports, if any.

The parameter element has two attributes:

❍ name - specifies the name of the parameter. It is required.
❍ value - specifies the value for the parameter. It is required.

● include-element - specifies the name of an element supported by the STAX extension jar file to be included. Any number
of include-elements may be specified for an extension. However, if an include-element is specified, no exclude-elements

file:///C|/temp/staxug/staxug.html (133 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

can be specified. If one or more include-elements are specified, then only those elements named by each include-element
are registered. Any other elements supported by the STAX extension jar file are excluded (not registered).

The include-element has one attribute:

❍ name - specifies the name of the element to include. It is required.

● exclude-element - specifies the name of an element supported by the STAX extension jar file to be excluded (not
registered). Any number of exclude-elements may be specified for an extension. However, if an exclude-element is
specified, no include-elements can be specified. If one or more exclude-elements are specified, then only those elements
supported by the STAX extension jar file that are not named by an exclude-element are registered.

The exclude-element has one attribute:

❍ name - specifies the name of the element to exclude. It is required.

Note:

● If no include-element or exclude-element elements are specified, all of the elements supported by the STAX extension jar
file will be registered.

Usage:

The following STAX Extensions XML file defines three STAX extensions. In this example, all three extension elements are empty
elements.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE stax-extensions SYSTEM "stax-extensions.dtd">
<stax-extensions>

 <extension jarfile="C:/STAF/services/ExtDelay.jar"/>

 <extension jarfile="C:/STAF/services/ExtMessageText.jar"/>

 <extension jarfile="C:/STAF/services/EmailExt.jar"/>

</stax-extensions>

The following STAX Extensions XML file defines four STAX extensions. All three extension files are located in the services
directory off the root of the STAF directory.

● The first extension jar file, named ExtMessageText.jar, has no parameters, no include-elements, and no exclude-elements.
● The second extension jar file, named ExtDelay.jar, has one parameter specified named delay and specifies to include all

elements supported by this extension jar file except for the ext-wait and ext-sleep elements.
● The third extension jar file, named EmailExt.jar specifies to include just one element named email so that any other

elements supported by this extension jar file are excluded (not registered).

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE stax-extensions SYSTEM "stax-extensions.dtd">

<stax-extensions>

 <extension jarfile="{STAF/Config/STAFRoot}/services/ExtMessageText.jar"/>

file:///C|/temp/staxug/staxug.html (134 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 <extension jarfile="{STAF/Config/STAFRoot}/services/ExtDelay.jar">
 <parameter name="delay" value="5"/>
 <exclude-element name="ext-wait"/>
 <exclude-element name="ext-sleep"/>
 </extension>

 <extension jarfile="{STAF/Config/STAFRoot}/services/EmailExt.jar">
 <include-element name="email"/>
 </extension>

</stax-extensions>

Registering STAX Monitor Extensions

STAX monitor extensions define a new plug-in views that can be displayed via the STAX Monitor. For example, you may want to
register a STAX monitor extension that displays a new extension element in the "Active Job Elements" panel. Or you may want to
register a STAX monitor extension that displays a new tab in the "Active Job Elements" or "Info" panel.

As of STAX V1.5.0, any STAX monitor extensions that are registered with the STAX service will be automatically made available
to the STAX Monitor. You should only specify local extension jar files that are not registered with the STAX service or that
contain monitor extensions that you want to override (e.g. with a later version of the extension). See the "Registering STAX
Service Extensions" section for more information on how to register STAX extensions with the STAX service.

To view monitor extensions that are registered with the STAX Monitor, from the main "STAX Job Monitor" panel, click on the
File->Properties->Extensions tab. See the "Extensions" tab section for more information. You can also display the monitor
extensions that are registered by specifying the -extensions option when starting the STAX Monitor.

To view, add, or delete a local extension jar file, from the main "STAX Job Monitor" panel, click on the File->Properties-
>Extension Jars tab. See the "Extension Jars" tab section for more information.

Note: The "View" menu for the "STAX Job Monitor" panel does not currently support the ability to de-select registered monitor
extensions.

Generating STAX Function Documentation using a
XSL StyleSheet
A sample XSL Stylesheet, FunctionList.xsl, is provided to aid in generating documentation about your STAX Functions. It
describes how to transform information provided in the <function-prolog element (or the deprecated <function-description
element), the <function-epilog> element and the function argument elements into readable documentation. It can be used in
conjunction with an XSLT stylesheet processor, such as Xalan, to transform function information provided in a STAX XML
document to an HTML document.

The Xalan-Java XSLT processor is available for download from http://xml.apache.org/xalan-j/index.html. Other XSLT processors
are also available.

The FunctionList.xsl file can be found in the samples directory from the extracted STAX zip/tar file you downloaded. You may

file:///C|/temp/staxug/staxug.html (135 of 173) [4/17/2006 1:40:20 PM]

http://xml.apache.org/xalan-j/index.html

STAF Execution Engine (STAX) Service User's Guide

want to customize this stylesheet to generate function documentation in the form that best suites your purposes.

Here is the HTML document generated from the sample1.xml document provided with STAX. This documentation was generated
using the Xalan-Java XSLT Processor and the FunctionList.xsl stylesheet. Note that we had to comment out the DOCTYPE line in
sample1.xml to avoid an error that STAX.DTD is not available (unless you create it using the STAX GET DTD request and
redirect its output to a file).

STAX Function Definitions

MonitorTest

For each machine specified by the MachList argument, function RunProcesses is called and run in parallel. This is done in a
continous loop until the time specified by the duration argument is reached.

This function takes an argument map

Name Description Required Default

duration Timer duration to run the test. e.g. '5m', '1h', '90s', etc. No '2m'

MachList List of machines where the test will be run No ['local', 'local']

STAXJarFile Fully-qualified name of STAX jar file on each machine where the test will be run No STAFJarFile

RunProcesses

This function runs multiple processes. Each process runs a Java program called TestProcess (which is included in the
STAXMon.jar file) and passes it different parameters which effect how long it runs until it completes and whether it is successful
or not. The parameters for TestProcess are number of loops, seconds to wait between loops, and RC to return at the end of the
process.

This function takes an argument map

Name Description Required Default

machName Location (machine name) to run the process Yes N/A

blockNum
Number used in conjunction with the machine name to get a unique block name (in case running
multiple times on the same machine)

Yes N/A

loopNum Current loop number Yes N/A

RunSTAFCommands

This function runs several STAF Commands using following STAF services: DELAY, MISC, and SERVICE.

file:///C|/temp/staxug/staxug.html (136 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

This function takes an argument map

Name Description Required Default

machName Location (machine name) to run the process Yes N/A

blockNum
Number used in conjunction with the machine name to get a unique block name (in case running
multiple times on the same machine)

Yes N/A

PASS-if-0

This function checks if a value is 0. If 0, it sets the testcase status result to 'pass'; otherwise, it sets it to 'fail' and sends a message to
the STAXMonitor.

This function takes a single argument

Name value

Description Value (usually RC or STAXResult variable) to compare with 0

Required Yes

Default N/A

Debugging
If you have a question or are experiencing a problem, first check out the STAF/STAX FAQ at
http://staf.sourceforge.net/current/STAFFAQ.htm to see if it provides an answer to your question or problem.

Note that since STAX is a Java service, errors that occur running the STAX service may be logged to its JVM log. If you're
experiencing a problem configuring the STAX service, or an RC 6 submitting a request to the STAX service, or a problem running
a STAX job, such as the job hanging, check its JVM log to see if any additional information about the problem is logged, such as a
Java exception. The JVM logs are stored in the {STAF/Config/STAFRoot}/data/JSTAF/<JVMName> directory on the system
where the STAX service is registered, where <JVMName> is either STAFJVM1 if you're using the default JVM name or it's the
value specified for the JVMName option when the STAX service was registered. The current JVM log is named JVMLog.1.

If the JVM log contains an OutOfMemory error, any Java services using this JVM will have to be removed and added (registered)
in order to start accepting requests. You may want to look at increasing the JVM's maximum heap size as the Java service(s) using
this JVM may require more memory than can be allocated. Refer to the STAF User's Guide, section "4.4.3 JSTAF service proxy
library", for more information on how to do this. If the JVM was killed, any Java services using this JVM will have to be removed
and added (registered) in order to start accepting requests.

Support Information
If you have a question or are experiencing a problem, first check out the STAF/STAX FAQ at
http://staf.sourceforge.net/current/STAFFAQ.htm to see if it provides an answer to your question or problem.

file:///C|/temp/staxug/staxug.html (137 of 173) [4/17/2006 1:40:20 PM]

http://staf.sourceforge.net/current/STAFFAQ.htm
http://staf.sourceforge.net/current/STAFFAQ.htm

STAF Execution Engine (STAX) Service User's Guide

Please report bugs or request features via the STAF SourceForge website at:

 http://staf.sourceforge.net

You may also post questions, problems, comments and suggestions via this website.

It is our goal to retain backward compatibility in future versions of STAX.

Known Problems

Here are some of the known problems and issues with this version of STAX. You may view a complete list of bugs and requested
features via the STAF SourceForge website at:

 http://staf.sourceforge.net

These problems will be resolved in a future version of STAX.

1. Each time the STAX Service is started, the Job ID is reset to 1. Thus, STAX log files can contain information for multiple
jobs. That is, log file STAX_LOG_1 can contain information for multiple jobs whose Job ID was 1. If you do not want this
to happen, each time you stop the STAX Service, you can backup the STAX log files (if desired) and enable "Clear Logs"
when registering the STAX service or when executing a STAX job.

Note, multiple jobs in the same log are separated by messages with a level of "start" and "stop" with the message text
beginning with "JobID: ". So, even when multiple jobs appear in the same log file, it is still possible to determine where one
job ends and another one starts.

2. More detailed tracing of a job for debugging purposes will be provided in a future version of STAX.

3. More information about how to override and then restore the default signal handlers will be provided in a future version of
STAX.

History of Changes

See the History file provided in the STAX zip/tar file you downloaded for a history of the changes that have been made to the
STAX service.

Appendix A: Comparison of STAX with GenWL
STAX allows you to automate workflow in your test environment as does the Generic WorkLoad Processor (GenWL). The
intention is to replace GenWL with STAX. STAX provides all the functions of GenWL and more.

file:///C|/temp/staxug/staxug.html (138 of 173) [4/17/2006 1:40:20 PM]

http://staf.sourceforge.net/
http://staf.sourceforge.net/

STAF Execution Engine (STAX) Service User's Guide

Appendix B: STAX XML Document Examples
Some examples of STAX XML documents are provided in the samples and libraries directories as part of the STAX zip/tar file.
The samples directory contains examples of STAX jobs. The libraries directory contain STAX XML documents that contain
common functions that you may want to import and call from STAX XML documents that you write.

STAX Utility Functions

A STAX xml file called STAXUtil.xml is provided in the libraries directory. It contains some common STAX utility functions that
you may want to import using the <import> element and call from STAX XML documents that you write. This allows you to reuse
common functions and makes integration of tests written by different parties easier. See the STAXUtil.html file that is also
provided in the libraries directory for more information about these functions, such as the arguments to pass in, what is returned,
and usage examples. Note that this HTML file was generated using a XSLT processor which converted information in the
STAXUtil.xml file into readable HTML documentation.

STAXUtil.xml contains the following functions:

● STAF

Submits a request to STAF. It's a shortcut for the <stafcmd> element.

● STAFProcess

Submits a STAF request to start a process in a separate shell (using the default shell command). It's a shortcut for the
<process> element when you only need to specify the command to be started in a separate shell.

● STAFProcessUsing

Submits a STAF request to start a process using a map to define values for the process element's sub-elements. It's a
shortcut for the <process> element when additional options need to be specified.

● STAXUtilLogAndMsg

Logs a message and sends the message to the STAX Monitor. It's a shortcut for specifying the <message> and <log>
elements for the same message.

● STAXUtilWaitForSTAF

Waits for STAF to become available (that is, for the STAFProc daemon to be running) on one or more machines. A
maximum wait time can be specified, overriding the default maximum wait time of 5 minutes. If one or more machines are
not available, and the maximum wait time has not been exceeded, delays 5 seconds and then retries. This function can be
useful after rebooting one or more systems.

● STAXUtilCopyFiles

Copies files from a directory on a machine to a directory on the same or different machine. You can specify which files to
copy from a directory using the name pattern, extension pattern, case sensitivity, and/or regular expression arguments.

The regular expression allows you to define complicated pattern matching rules to determine which files to copy.

file:///C|/temp/staxug/staxug.html (139 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

Note that this function only copies files; no subdirectories will be copied.

For performance reasons, the files are copied in groups of up to 5 in parallel. If the toDirectory does not exist, it will be
created. If any of the files being copied already exist on the toMachine, they will be replaced.

● STAXUtilListDirectory

Lists files in a directory on a machine. You can specify which files to list using the name pattern, extension pattern, case
sensitivity, and/or regular expression arguments.

The regular expression allows you to define complicated pattern matching rules to determine which files to copy.

● STAXUtilCheckSuccess

Checks if a result indicates success or failure. If the result evaluates to a true value:

1. If a pass message is provided, it is logged in the STAX User Log and, optionally, sent to the STAX Monitor.
2. A testcase status of pass is recorded if the recordStatus evaluates to a true expression.

Otherwise, if the result evaluates to a false value:

1. If a failure message is provided, it is logged in the STAX User Log and, optionally, sent to the STAX Monitor.
2. A testcase status of fail is recorded if the recordStatus evaluates to a true expression.

● STAXUtilImportSTAFVars

Imports STAF variables on the specified machines, creating STAX variables from them.

If only one machine is specified, for each STAF variable name that is specified, a STAX variable with the specified name is
created with the resolved contents of the STAF variable for the specified machine assigned to it.

If a list of machines is specified, for each STAF variable name that is specified, a STAX map is created with the specified
name which contains an entry for each machine (key) with a value of the resolved contents of the STAF variable for that
machine assigned.

● STAXUtilImportSTAFConfigVars

Imports STAF Configuration variables (such as STAF/Config/OS/Name and STAF/Config/Sep/File) on the specified
machine, creating a STAX variable map containing their values and returning the map.

● STAXUtilExportSTAFVars

Exports STAX variables, creating STAF variables from them on the specified machines.

For each STAX variable name that is specified, a STAF variable with the specified name is created for the specified
machines.

● STAXUtilQueryAllTests

For each STAX variable name that is specified, a STAF variable with the specified name is created for the specified
machines. Query the results for all testcases in the currently running job, accumulating the total number of testcases, passes,

file:///C|/temp/staxug/staxug.html (140 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

and fails recorded so far as well as a map of all the testcases and their passes, fails, elapsed times, and number of starts.

● STAXUtilQueryTest

Query the results for a single testcase in the currently running job.

Sample STAX Jobs

Here are a couple of examples of a STAX XML document's contents. The following example is the sample1.xml file provided in
the samples directory as part of the STAX zip/tar file.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE stax SYSTEM "stax.dtd">

<!--
 sample1.xml - Sample of a job definition file for STAX

 Job Description:

 This job executes various STAF commands and processes and
 sends messages to the STAX Job Monitor.
-->

<stax>

 <!--
 Change the values specified for MachList and/or duration
 and/or STAXJarFile as desired by changing the values passed to
 function MonitorTest via the <defaultcall> element in this file
 or override them by specifying the arguments parameter when
 submitting the job for execution. Examples of values for the
 arguments parameter:
 { 'duration': '10m', 'MachList': ['machA', machB', 'machC'] }
 { 'MachList': ['myMachine'] }
 { 'duration': '1h' }
 { 'STAXJarFile': '/usr/local/staf/services/STAXMon.jar' }
 -->

 <script>
 STAXServicesDir = '{STAF/Config/STAFRoot}{STAF/Config/Sep/File}services'
 STAXJarFile = '%s{STAF/Config/Sep/File}STAXMon.jar' % STAXServicesDir
 </script>

 <defaultcall function="MonitorTest">
 { 'MachList': ['local', 'local'], 'duration': '2m', 'STAXJarFile': STAXJarFile }
 </defaultcall>

 <function name="MonitorTest" scope="local" requires="RunProcesses">

 <function-prolog>
 For each machine specified by the MachList argument, function
 RunProcesses is called and run in parallel. This is done in a
 continous loop until the time specified by the duration argument
 is reached.

file:///C|/temp/staxug/staxug.html (141 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 </function-prolog>

 <function-map-args>

 <function-optional-arg name="duration" default="'2m'">
 Timer duration to run the test. e.g. '5m', '1h', '90s', etc.
 </function-optional-arg>

 <function-optional-arg name="MachList" default="['local', 'local']">
 List of machines where the test will be run
 </function-optional-arg>

 <function-optional-arg name="STAXJarFile" default="STAFJarFile">
 Fully-qualified name of STAX jar file on each machine where the test will be
run
 </function-optional-arg>

 </function-map-args>

 <testcase name = "'Timer'">

 <sequence>
 <script>
 import time
 starttime = time.time(); # record starting time
 </script>

 <message>
 'duration=%s, MachList=%s' % (duration, MachList)
 </message>

 <!-- Resolve the STAXJarFile which may contain STAF variables -->
 <stafcmd>
 <location>'local'</location>
 <service>'var'</service>
 <request>'resolve %s' % STAXJarFile</request>
 </stafcmd>

 <if expr="RC == 0">
 <sequence>
 <script>STAXJarFile = STAFResult</script>
 <message>'STAXJarFile=%s' % (STAXJarFile)</message>
 </sequence>
 <else>
 <sequence>
 <message>
 'Error resolving STAXJarFile: RC=%s, STAFResult=%s, \
 STAXJarFile=%s' % (RC, STAFResult, STAXJarFile)
 </message>
 <message>'Terminating job'</message>
 <terminate block="'main'"/>
 </sequence>
 </else>
 </if>

 <!-- Loop continuously for the specified duration -->

file:///C|/temp/staxug/staxug.html (142 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 <timer duration="duration">
 <loop var="loopNum">
 <paralleliterate var="machName" in="MachList" indexvar="i">
 <block name="'%s_%d' % (machName, i)">
 <testcase name="machName">
 <call-with-map function="'RunProcesses'">
 <call-map-arg name="'machName'">machName</call-map-arg>
 <call-map-arg name="'loopNum'">loopNum</call-map-arg>
 <call-map-arg name="'blockNum'">i</call-map-arg>
 </call-with-map>
 </testcase>
 </block>
 </paralleliterate>
 </loop>
 </timer>

 <script>
 stoptime = time.time() # record ending time
 elapsedSecs = stoptime - starttime # difference yields time elapsed in
seconds
 </script>

 <message>'Test complete - ran for %d seconds' % elapsedSecs</message>

 <if expr="RC == 1">
 <tcstatus result="'pass'">
 'Timer ran for %d seconds' % elapsedSecs
 </tcstatus>
 <else>
 <tcstatus result="'fail'">
 'Timer only ran for %d seconds. RC=%d' % (elapsedSecs, RC)
 </tcstatus>
 </else>
 </if>

 </sequence>

 </testcase>

 </function>

 <function name="RunProcesses" scope="local"
 requires="PASS-if-0 RunSTAFCommands">

 <function-prolog>
 This function runs multiple processes. Each process runs a Java
 program called TestProcess (which is included in the STAXMon.jar file)
 and passes it different parameters which effect how long it runs
 until it completes and whether it is successful or not.
 The parameters for TestProcess are number of loops, seconds to wait
 between loops, and RC to return at the end of the process.
 </function-prolog>

 <function-map-args>

file:///C|/temp/staxug/staxug.html (143 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 <function-required-arg name="machName">
 Location (machine name) to run the process
 </function-required-arg>

 <function-required-arg name="blockNum">
 Number used in conjunction with the machine name to get a unique
 block name (in case running multiple times on the same machine)
 </function-required-arg>

 <function-required-arg name="loopNum">
 Current loop number
 </function-required-arg>

 </function-map-args>

 <sequence>

 <message>
 'Starting run #%d on %s' % (loopNum, machName)
 </message>

 <script>
 className = 'com.ibm.staf.service.stax.TestProcess'
 </script>

 <process name="'TestProcess'">
 <location>machName</location>
 <command>'java'</command>
 <parms>'%s 5 6 0' % className</parms>
 <title>'First title example'</title>
 <env>'CLASSPATH=%s{STAF/Config/Sep/Path}{STAF/Env/ClassPath}' %
STAXJarFile</env>
 <console use="'same'"/>
 </process>

 <call function="'PASS-if-0'">RC</call>

 <message>
 'Process RC=%d on machine %s' % (RC, machName)
 </message>

 <call function="'RunSTAFCommands'">
 { 'machName': machName, 'blockNum': blockNum }
 </call>

 <call function="'PASS-if-0'">STAXResult</call>

 <process name="'TestProcess'">
 <location>machName</location>
 <command>'java'</command>
 <parms>'%s 3 4 99' % className</parms>
 <env>'CLASSPATH=%s{STAF/Config/Sep/Path}{STAF/Env/ClassPath}' %
STAXJarFile</env>
 <console use="'same'"/>
 </process>

file:///C|/temp/staxug/staxug.html (144 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 <call function="'PASS-if-0'">RC</call>

 <message>
 'Process RC=%d on machine %s' % (RC, machName)
 </message>

 <process name="'TestProcess'">
 <location>machName</location>
 <command>'java'</command>
 <parms>'%s 5 5 100' % className</parms>
 <title>'Second title example with many Process elements'</title>
 <workload>'STAX Monitor Workload'</workload>
 <vars>['firstName=Dave','middleInitial=M.','lastName=Bender']</vars>
 <vars>['pet=cat','petName=Fluffy']</vars>
 <env>'CLASSPATH=%s{STAF/Config/Sep/Path}{STAF/Env/ClassPath}' %
STAXJarFile</env>
 <env>'JAVA_APP=javaw.exe'</env>
 <useprocessvars/>
 <disabledauth action="'ignore'"/>
 <console use="'same'"/>
 </process>

 <call function="'PASS-if-0'">RC</call>

 <message>
 'Process RC=%d on machine %s' % (RC, machName)
 </message>

 <message>
 'Finished run #%d on machine %s' % (loopNum, machName)
 </message>

 </sequence>

 </function>

 <function name="RunSTAFCommands" scope="local">

 <function-prolog>
 This function runs several STAF Commands using following
 STAF services: DELAY, MISC, and SERVICE.
 </function-prolog>

 <function-map-args>

 <function-required-arg name="machName">
 Location (machine name) to run the process
 </function-required-arg>

 <function-required-arg name="blockNum">
 Number used in conjunction with the machine name to get a unique
 block name (in case running multiple times on the same machine)
 </function-required-arg>

 </function-map-args>

file:///C|/temp/staxug/staxug.html (145 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 <block name="'STAFCommandBlock%d' % blockNum">

 <sequence>

 <script>from random import random;r=random();r=r*10000</script>

 <message>'Delaying %d ms on machine %s' % (r,machName)</message>

 <stafcmd name="'STAF Command: RANDOM DELAY'">
 <location>machName</location>
 <service>'delay'</service>
 <request>'delay %d' % r</request>
 </stafcmd>

 <if expr="RC != 0">
 <return>RC</return>
 </if>

 <stafcmd name="'STAF Command: MISC VERSION'">
 <location>machName</location>
 <service>'misc'</service>
 <request>'version'</request>
 </stafcmd>

 <if expr="RC != 0">
 <return>RC</return>
 <else>
 <message>
 'Machine %s has STAF Version %s' % (machName,STAFResult)
 </message>
 </else>
 </if>

 <stafcmd name="'STAF Command: SERVICE LIST'">
 <location>machName</location>
 <service>'service'</service>
 <request>'list'</request>
 </stafcmd>

 <if expr="RC != 0">
 <return>RC</return>
 <else>
 <message>
 'Machine %s has STAF services:\n%s' % (machName,STAFResult)
 </message>
 </else>
 </if>

 <return>0</return>

 </sequence>

 </block>

 </function>

file:///C|/temp/staxug/staxug.html (146 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 <function name="PASS-if-0" scope="local">

 <function-prolog>
 This function checks if a value is 0. If 0, it sets the
 testcase status result to 'pass'; otherwise, it sets it
 to 'fail' and sends a message to the STAXMonitor.
 </function-prolog>

 <function-single-arg>
 <function-required-arg name="value">
 Value (usually RC or STAXResult variable) to compare with 0
 </function-required-arg>
 </function-single-arg>

 <if expr="value == 0">
 <tcstatus result="'pass'"/>
 <else>
 <tcstatus result="'fail'">
 'value=%d. Expected 0.' % value
 </tcstatus>
 </else>
 </if>
 </function>

</stax>

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE stax SYSTEM "stax.dtd">
<!--
 j13auto.xml

 XML Sample for STAX (STAf eXecution)

 Job Description:

 This job executes a set of automated tests on each machine
 defined in the "TestMachines" List. Each machine executes
 in parallel. The setup and tests run serially on each machine.
 On each machine, the "Setup" Function is executed, and then the
 "RunVariations" Function is executed first for the "Java2D API
 variations" list and then for the "Print API variations" List.

 This job imports functions from STAXUtil.xml.
-->

<stax>

 <defaultcall function="j13auto"/>

 <script>
 # Make sure the importDir is where you put STAXUtil.xml
 importDir = 'C:/staf/services/libraries'

file:///C|/temp/staxug/staxug.html (147 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 TestCaseServer = 'AL1B4'
 TestCaseDir = 'D:/jdk13/tests/api'
 TestCaseFiles = ['Java2DAPI.jar','PrintAPI.jar']
 TestMachines = ['AL2C4','AM3D4','AA3B4','CE1A4','AH2D4']
 Java2DAPI = ['AlphaComposite001', 'AlphaComposite002',
 'AlphaComposite003', 'GraphicsEnvironment001',
 'GraphicsEnvironment002','ICC_ProfileRGB001',
 'ICC_ProfileRGB002', 'ICC_ProfileRGB003',
 'ICC_ProfileRGB004', 'ICC_ProfileRGB005',
 'ICC_ProfileRGB006', 'GlyphMetrics001',
 'GlyphMetrics002', 'DirectColorModel001',
 'DirectColorModel002', 'DirectColorModel003',
 'DirectColorModel004', 'DirectColorModel005']
 PrintAPI = ['PageFormat001', 'PageFormat002',
 'PrinterJob001', 'PrinterJob002',
 'PrinterJob003', 'PrinterJob004',
 'PageAttributes001', 'PageAttributes002',
 'PageAttributes003']
 </script>

 <function name="j13auto">

 <sequence>

 <import machine="'local'" file="'%s/STAXUtil.xml' % importDir"/>

 <paralleliterate var="machName" in="TestMachines">

 <sequence>

 <call function="'Setup'"/>

 <testcase name="Java2D">
 <sequence>
 <script>variationList = Java2DAPI[:]</script>
 <script>jarName = '%s/%s' % (TestCaseDir, TestCaseFiles[0])</script>
 <call function="'RunVariations'"/>
 </sequence>
 </testcase>

 <testcase name="Print">
 <sequence>
 <script>variationList = PrintAPI[:]</script>
 <script>jarName = '%s/%s' % (TestCaseDir, TestCaseFiles[1])</script>
 <call function="'RunVariations'"/>
 </sequence>
 </testcase>

 </sequence>

 </paralleliterate>

 </sequence>

 </function>

file:///C|/temp/staxug/staxug.html (148 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 <function name="Setup">

 <iterate var="file" in="TestCaseFiles">

 <stafcmd>
 <location>TestCaseServer</location>
 <service>'FS'</service>
 <request>
 'COPY FILE %s/%s TOMACHINE %s' % (TestCaseDir, file, machName)
 </request>
 </stafcmd>

 </iterate>

 </function>

 <function name="RunVariations">

 <testcase name="machName">

 <iterate var="variationName" in="variationList">

 <sequence>

 <process>
 <location>machName</location>
 <command>'java'</command>
 <parms>'-jar ' + jarName + ' ' + variationName</parms>
 </process>

 <call> function="'STAXUtilCheckSuccess'">
 { 'result': RC == 0,
 'failMsg': 'Process failed. RC=%s Result=%s' % (RC, STAFResult),
 'sendToMonitor': 1, 'recordStatus': 1 }
 </call>

 </sequence>

 </iterate>

 </testcase>

 </function>

</stax>

If you performed a STAX EXECUTE request specifying a file containing the above sample XML file and then ran the following
STAX request to query the job's testcase information right before the job completed:

 LIST JOB 15 TESTCASES

you would see output similar to the following (depending on how many testcase variations passed or failed on each machine) if
"Log TC Elapsed Time" and "Log TC Num Starts" are disabled:

file:///C|/temp/staxug/staxug.html (149 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

Java2D.AL2C4;18;0
Java2D.AM3D4;16;2
Java2D.AA3B4;5;13
Java2D.CE1C4;18;0
Java2D.AH2D4;18;0
Print.AL2C4;9;0
Print.AM3D4;9;0
Print.AA3B4;7;2
Print.CE1C4;8;1
Print.AH2D4;9;0

Appendix C: STAX Service Error Code Reference
In addition to the common STAF return codes, the following STAX service return codes are defined:

Error
Code Meaning Comment

4001
Error submitting
execute request

Additional information about the error is put into the STAF Result. An example of additional
information that may be provided is:

Caught com.ibm.staf.service.stax.STAXXMLParseException:
Line 78: The element type "sequence" must be terminated by the matching end-tag
"</sequence>".

In this case, it indicates an error in your XML file that you must correct.

4002 Block not held Requested to release a block that is not held.

4003 Block already held Requested to hold a block that is already held.

Appendix D: STAX Document Type Definition (DTD)
This section contains the DTD for the STAX service (without any extensions). You can display the DTD that the STAX service is
using (including any extensions) by issuing the GET DTD request.

<!--
 STAf eXecution (STAX) Document Type Definition (DTD)

 Generated Date: 20031021-17:54:56

 This DTD module is identified by the SYSTEM identifier:

 SYSTEM 'stax.dtd'

-->

<!-- Parameter entities referenced in Element declarations -->

file:///C|/temp/staxug/staxug.html (150 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

<!ENTITY % stax-elems 'function | script | signalhandler'>

<!ENTITY % task 'timer | log | parallel |
 call | stafcmd | script |
 tcstatus | message | iterate |
 sequence | import | raise |
 job | nop | process |
 try | break | testcase |
 paralleliterate | continue | throw |
 release | signalhandler | rethrow |
 block | hold | terminate |
 return | if | call-with-list |
 loop | call-with-map'>

<!--================= STAX Job Definition ========================== -->
<!--
 The root element STAX contains all other elements. It consists
 of an optional defaultcall element and any number of function,
 script, and/or signalhandler elements.
-->
<!ELEMENT stax ((%stax-elems;)*, defaultcall?, (%stax-elems;)*)>

<!--================= The Default Call Function Element ============ -->
<!--
 The defaultcall element defines the function to call by default
 to start the job. This can be overridden by the 'FUNCTION'
 parameter when submitting the job to be executed.
 The function attribute's value is a literal.
-->
<!ELEMENT defaultcall (#PCDATA)>
<!ATTLIST defaultcall
 function IDREF #REQUIRED
>

<!--================= Continue Element ============================= -->
<!--
 The continue element can be used to continue to the top of a loop
 or iterate element.
-->
<!ELEMENT continue EMPTY>

<!--================= Break Element ================================ -->
<!--
 The break element can be used to break out of a loop or iterate
 element.
-->
<!ELEMENT break EMPTY>

<!--================= The Call-With-Map Element ==================== -->
<!--
 Perform a function with the referenced name with any number of
 arguments in the form of a map of named arguments. The function
 and name attribute values as well as the argument value are
 evaluated via Python.

file:///C|/temp/staxug/staxug.html (151 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

-->
<!ELEMENT call-with-map (call-map-arg*)>
<!ATTLIST call-with-map
 function CDATA #REQUIRED
>

<!ELEMENT call-map-arg (#PCDATA)>
<!ATTLIST call-map-arg
 name CDATA #REQUIRED
>

<!--================= The No Operation Element ===================== -->
<!--
 No operation action.
-->
<!ELEMENT nop EMPTY>

<!--================= The Function Element ========================= -->
<!--
 The function element defines a named task which can be called.
 The name and scope attribute values are literals.
 If desired, the function can be described using a function-prolog
 element (or the deprecated function-description element) and/or a
 function-epilog element. Also, if desired, the function element
 can define the arguments that can be passed to the function.
-->
<!ELEMENT function ((function-prolog | function-description)?,
 (function-epilog)?,
 (function-no-args | function-single-arg |
 function-list-args | function-map-args)?,
 (%task;))>
<!ATTLIST function
 name ID #REQUIRED
 requires IDREFS #IMPLIED
 scope (local | global) "global"
>

<!ELEMENT function-prolog (#PCDATA)>

<!ELEMENT function-epilog (#PCDATA)>

<!ELEMENT function-description (#PCDATA)>

<!ELEMENT function-no-args EMPTY>

<!ELEMENT function-single-arg (function-required-arg |
 function-optional-arg)>

<!ELEMENT function-list-args (((function-required-arg+,
 function-optional-arg*) |
 (function-required-arg*,
 function-optional-arg+)),
 (function-other-args)?)>

<!ELEMENT function-map-args ((function-required-arg |

file:///C|/temp/staxug/staxug.html (152 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 function-optional-arg)+,
 (function-other-args)?)>

<!ELEMENT function-required-arg (#PCDATA)>
<!ATTLIST function-required-arg
 name CDATA #REQUIRED
>

<!ELEMENT function-optional-arg (#PCDATA)>
<!ATTLIST function-optional-arg
 name CDATA #REQUIRED
 default CDATA "None"
>

<!ELEMENT function-other-args (#PCDATA)>
<!ATTLIST function-other-args
 name CDATA #REQUIRED
>

<!--================= The Iterate Element ========================= -->
<!--
 The iterate element iterates through a list of items, performing
 its contained task while substituting each item in the list.
 The iterated tasks are performed in sequence.
-->
<!ELEMENT iterate (%task;)>
<!-- var is the name of the variable which will contain the
 current item in the list or tuple being iterated.
 It is a literal.
 in is the list or tuple to be iterated. It is evaluated
 via Python and must evaluate to be a list or tuple.
 indexvar is the name of a variable which will contain the index of
 the current item in the list or tuple being iterated.
 It is a literal. The value for the first index is 0.
-->
<!ATTLIST iterate
 var CDATA #REQUIRED
 in CDATA #REQUIRED
 indexvar CDATA #IMPLIED
>

<!--================= The Log Element ============================== -->
<!--
 Writes a message and its log level to a STAX Job User Log file.
 The message must evaluate via Python to a string.

 The log level specified defaults to 'info'. If specified, it
 must evaluate via Python to a string containing be one of the
 following STAF Log Service Log levels:
 fatal, warning, info, trace, trace2, trace3, debug, debug2,
 debug3, start, stop, pass, fail, status, user1, user2, user3,
 user4, user5, user6, user7, user8
 If an if attribute is specified and it evaluates via Python to
 false, then the log element is ignored.
-->

file:///C|/temp/staxug/staxug.html (153 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

<!ELEMENT log (#PCDATA)>
<!ATTLIST log
 level CDATA "'info'"
 if CDATA "1"
>

<!--================= The Parallel Iterate Element ================ -->
<!--
 The parallel iterate element iterates through a list of items,
 performing its contained task while substituting each item in
 the list. The iterated tasks are performed in parallel.
-->
<!ELEMENT paralleliterate (%task;)>
<!-- var is the name of a variable which will contain the current
 item in the list or tuple being iterated.
 It is a literal.
 in is the list or tuple to be iterated. It is evaluated
 via Python and must evaluate to be a list or tuple.
 indexvar is the name of a variable which will contain the index of
 the current item in the list or tuple being iterated.
 It is a literal. The value of the first index is 0.
-->
<!ATTLIST paralleliterate
 var CDATA #REQUIRED
 in CDATA #REQUIRED
 indexvar CDATA #IMPLIED
>

<!--================= The Throw Element ============================ -->
<!--
 The throw element specifies an exception to throw.
 The exception attribute value and any additional information
 is evaluated via Python.
-->
<!ELEMENT throw (#PCDATA)>
<!ATTLIST throw
 exception CDATA #REQUIRED
>

<!--================= The Block Element ============================ -->
<!--
 Defines a task block that can be held, released, or terminated.
 Used in conjunction with the hold/terminate/release elements to
 define a task block that can be held, terminated, or released.
 The name attribute value is evaluated via Python.
-->
<!ELEMENT block (%task;)>
<!ATTLIST block
 name CDATA #REQUIRED
>

<!--================= The Try / Catch Block Elements =============== -->
<!--
 The try element allows you to perform an action and to catch

file:///C|/temp/staxug/staxug.html (154 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 exceptions that are thrown.
-->
<!ELEMENT try ((%task;), catch+)>
<!--
 The catch element performs a task when the specified exception is
 caught. The var attribute specifies the name of the variable to
 receive the data specified within the throw element. The typevar
 attribute specifies the name of the variable to receive the type
 of the exception.

-->
<!ELEMENT catch (%task;)>
<!ATTLIST catch
 exception CDATA #REQUIRED
 var CDATA #IMPLIED
 typevar CDATA #IMPLIED
>

<!--================= The Terminate Element ======================== -->
<!--
 The terminate element specifies to terminate a block in the job.
-->
<!ELEMENT terminate EMPTY>
<!ATTLIST terminate
 block CDATA #IMPLIED
>

<!--================= The Sequence Element ========================= -->
<!--
 The sequence element performs one or more tasks in sequence.
-->
<!ELEMENT sequence (%task;)+>

<!--================= The Timer Element ============================ -->
<!--
 The timer element runs a task for a specified duration.
 If the task is still running at the end of the specified duration,
 then the RC variable is set to 1, else if the task ended before
 the specified duration, the RC variable is set to 0, else if the
 timer could not start due to an invalid duration, the RC variable
 is set to -1.
-->
<!ELEMENT timer (%task;)>
<!-- duration is the maximum length of time to run the task.
 Time can be expressed in milliseconds, seconds, minutes,
 hours, days, weeks, or years. It is evaluated via Python.
 Examples: duration='50' (50 milliseconds)
 duration='90s' (90 seconds)
 duration='5m' (5 minutes)
 duration='36h' (36 hours)
 duration='3d' (3 days)
 duration='1w' (1 week)
 duration='1y' (1 year)
-->

file:///C|/temp/staxug/staxug.html (155 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

<!ATTLIST timer
 duration CDATA #REQUIRED
>

<!--================= The Message Element ========================== -->
<!--
 Generates an event and makes the message value available to the
 STAX Job Monitor. The message must evaluate via Python to a string.
 If an if attribute is specified and it evaluates via Python to
 false, the message element is ignored.
-->
<!ELEMENT message (#PCDATA)>
<!ATTLIST message
 if CDATA "1"
>

<!--================= The Signal Handler Element =================== -->
<!--
 The signalhandler element defines how to handle a specified signal.
 The signal attribute value is evaluated via Python.
-->
<!ELEMENT signalhandler (%task;)>
<!ATTLIST signalhandler
 signal CDATA #REQUIRED
>

<!--================= The Testcase Element ========================= -->
<!--
 Defines a testcase. Used in conjunction with the tcstatus
 element to mark the status for a testcase.
 The name attribute value is evaluated via Python.
-->
<!ELEMENT testcase (%task;)>
<!ATTLIST testcase
 name CDATA #REQUIRED
 mode CDATA "'default'"
>

<!--================= The Import Elements ============================ -->
<!--
 Allows importing of functions from another STAX XML job file.
-->
<!ELEMENT import (import-include?, import-exclude?)?>
<!ATTLIST import
 machine CDATA #REQUIRED
 file CDATA #REQUIRED
 mode CDATA "'error'"
>

<!ELEMENT import-include (#PCDATA)>
<!ELEMENT import-exclude (#PCDATA)>

<!--================= The Hold Element ============================= -->
<!--
 The hold element specifies to hold a block in the job.

file:///C|/temp/staxug/staxug.html (156 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

-->
<!ELEMENT hold EMPTY>
<!ATTLIST hold
 block CDATA #IMPLIED
>

<!--================= The Conditional Element (if-then-else) ======= -->
<!--
 Allows you to write an if or a case construct with zero or more
 elseifs and one or no else statements.

 The expr attribute value is evaluated via Python and must evaluate
 to a boolean value.
-->
<!ELEMENT if ((%task;), elseif*, else?)>
<!ATTLIST if
 expr CDATA #REQUIRED
>
<!ELEMENT elseif (%task;)>
<!ATTLIST elseif
 expr CDATA #REQUIRED
>
<!ELEMENT else (%task;)>

<!--================= The STAF Command Element ===================== -->
<!--
 Specifies a STAF command to be executed.
 Its name and all of its element values are evaluated via Python.
-->
<!ELEMENT stafcmd (location, service, request)>
<!ATTLIST stafcmd
 name CDATA #IMPLIED
>
<!ELEMENT service (#PCDATA)>
<!ELEMENT request (#PCDATA)>

<!--================= The STAF Process Element ===================== -->
<!--
 Specifies a STAF process to be started.
 All of its non-empty element values are evaluated via Python.
-->
<!ENTITY % procgroup1 '((parms?, workdir?) | (workdir?, parms?))'>
<!ENTITY % procgroup2 '((title?, workload?) | (workload?, title?))'>
<!ENTITY % procgroup1a '((parms?, workload?) | (workload?, parms?))'>
<!ENTITY % procgroup2a '((title?, workdir?) | (workdir?, title?))'>
<!ENTITY % procgroup3 '(((vars | var | envs | env)*, useprocessvars?) |
 (useprocessvars?, (vars | var | envs | env)*))'>
<!ENTITY % procgroup4 '(((username, password?)?, disabledauth?) |
 ((disabledauth?, (username, password?)?)))'>
<!ENTITY % procgroup5 '((stdin?, stdout?, stderr?) |
 (stdout?, stderr?, stdin?) |
 (stderr?, stdin?, stdout?) |
 (stdin?, stderr?, stdout?) |
 (stdout?, stdin?, stderr?) |

file:///C|/temp/staxug/staxug.html (157 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 (stderr?, stdout?, stdin?))'>
<!ENTITY % returnfileinfo '(returnfiles | returnfile)*'>
<!ENTITY % procgroup5a '((%returnfileinfo;, returnstdout?, returnstderr?) |
 (returnstdout?, returnstderr?, %returnfileinfo;) |
 (returnstderr?, %returnfileinfo;, returnstdout?) |
 (%returnfileinfo;, returnstderr?, returnstdout?) |
 (returnstdout?, %returnfileinfo;, returnstderr?) |
 (returnstderr?, returnstdout?, %returnfileinfo;))'>
<!ENTITY % procgroup6 '((stopusing?, console?, statichandlename?) |
 (stopusing?, statichandlename?, console?) |
 (console?, stopusing?, statichandlename?) |
 (console?, statichandlename?, stopusing?) |
 (statichandlename?, stopusing?, console?) |
 (statichandlename?, console?, stopusing?))'>
<!ELEMENT process (location, command,
 ((%procgroup1;, %procgroup2;) |
 (%procgroup2;, %procgroup1;) |
 (%procgroup1a;, %procgroup2a;) |
 (%procgroup2a;, %procgroup1a;)),
 %procgroup3;,
 ((%procgroup4;, %procgroup5;, %procgroup5a;, %procgroup6;) |
 (%procgroup4;, %procgroup6;, %procgroup5;, %procgroup5a;) |
 (%procgroup5;, %procgroup5a;, %procgroup4;, %procgroup6;) |
 (%procgroup5;, %procgroup5a;, %procgroup6;, %procgroup4;) |
 (%procgroup6;, %procgroup4;, %procgroup5;, %procgroup5a;) |
 (%procgroup6;, %procgroup5;, %procgroup5a;, %procgroup4;)),
 other?, process-action?)>
<!ATTLIST process
 name CDATA #IMPLIED
>

<!--
 The process element must contain a location element and a
 command element.
-->
<!ELEMENT location (#PCDATA)>
<!ELEMENT command (#PCDATA)>
<!ATTLIST command
 mode CDATA "'default'"
 shell CDATA #IMPLIED
>

<!--
 The parms element specifies any parameters that you wish to
 pass to the command.
 The value is evaluated via Python to a string.
-->
<!ELEMENT parms (#PCDATA)>
<!ATTLIST parms
 if CDATA "1"
>

<!--
 The workdir element specifies the directory from which the

file:///C|/temp/staxug/staxug.html (158 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 command should be executed. If you do not specify this
 element, the command will be started from whatever directory
 STAFProc is currently in.
 The value is evaluated via Python to a string.
-->
<!ELEMENT workdir (#PCDATA)>
<!ATTLIST workdir
 if CDATA "1"
>

<!--
 The title element specifies the program title of the process.
 Unless overridden by the process, the title will be the text
 that is displayed on the title bar of the application.
 The value is evaluated via Python to a string.
-->
<!ELEMENT title (#PCDATA)>
<!ATTLIST title
 if CDATA "1"
>

<!--
 The workload element specifies the name of the workload for
 which this process is a member. This may be useful in
 conjunction with other process elements.
 The value is evaluated via Python to a string.
-->
<!ELEMENT workload (#PCDATA)>
<!ATTLIST workload
 if CDATA "1"
>

<!--
 The vars (and var) elements specify STAF variables that go into the
 process specific STAF variable pool.
 The value must evaluate via Python to a string or a list of
 strings. Multiple vars elements may be specified for a process.
 The format for each variable is:
 'varname=value'
 So, a list containing 3 variables could look like:
 ['var1=value1', 'var2=value2', 'var3=value3']
 Specifying only one variable could look like either:
 ['var1=value1'] or
 'var1=value1'
-->
<!ELEMENT vars (#PCDATA)>
<!ATTLIST vars
 if CDATA "1"
>

<!ELEMENT var (#PCDATA)>
<!ATTLIST var
 if CDATA "1"
>

file:///C|/temp/staxug/staxug.html (159 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

<!--
 The envs (and env) elements specify environment variables that will
 be set for the process. Environment variables may be mixed case,
 however most programs assume environment variable names will
 be uppercase, so, in most cases, ensure that your environment
 variable names are uppercase.
 The value must evaluate via Python to a string or a list of
 strings. Multiple envs elements may be specified for a process.
 The format for each variable is:
 'varname=value'
 So, a list containing 3 variables could look like:
 ['ENV_VAR_1=value1', 'ENV_VAR_2=value2', 'ENV_VAR_3=value3']
 Specifying only one variable could look like either:
 ['ENV_VAR_1=value1'] or
 'ENV_VAR_1=value1'
-->
<!ELEMENT envs (#PCDATA)>
<!ATTLIST envs
 if CDATA "1"
>

<!ELEMENT env (#PCDATA)>
<!ATTLIST env
 if CDATA "1"
>
<!--
 The useprocessvars element specifies that STAF variable
 references should try to be resolved from the STAF variable
 pool associated with the process being started first.
 If the STAF variable is not found in this pool, the STAF
 global variable pool should then be searched.
-->
<!ELEMENT useprocessvars EMPTY>
<!ATTLIST useprocessvars
 if CDATA "1"
>

<!--
 The username element specifies the username under which
 the process should be started.
 The value is evaluated via Python to a string.
-->
<!ELEMENT username (#PCDATA)>
<!ATTLIST username
 if CDATA "1"
>

<!--
 The password element specifies the password with which to
 authenticate the user specified with the username element.
 The value is evaluated via Python to a string.
-->
<!ELEMENT password (#PCDATA)>

file:///C|/temp/staxug/staxug.html (160 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

<!ATTLIST password
 if CDATA "1"
>

<!-- The disabledauth element specifies the action to take if a
 username/password is specified but authentication has been disabled.

 action Must evaluate via Python to a string containing either:
 - 'error' specifies that an error should be returned.
 - 'ignore' specifies that any username/password specified
 is ignored if authentication is desabled.
 This action overrides any default specified in the STAF
 configuration file.
-->
<!ELEMENT disabledauth EMPTY>
<!ATTLIST disabledauth
 if CDATA "1"
 action CDATA #REQUIRED
>

<!--
 The stdin element specifies the name of the file from which
 standard input will be read. The value is evaluated via
 Python to a string.
-->
<!ELEMENT stdin (#PCDATA)>
<!ATTLIST stdin
 if CDATA "1"
>

<!--
 The stdout element specifies the name of the file to which
 standard output will be redirected.
 The value is evaluated via Python to a string.
-->
<!ELEMENT stdout (#PCDATA)>
<!-- mode specifies what to do if the file already exists.
 The value must evaluate via Python to one of the
 following:
 'replace' - specifies that the file will be replaced.
 'append' - specifies that the process' standard
 output will be appended to the file.
-->
<!ATTLIST stdout
 if CDATA "1"
 mode CDATA "'replace'"
>

<!--
 The stderr element specifies the file to which standard error will
 be redirected. The mode and filename are evaluated via Python to a
 string.
-->
<!ELEMENT stderr (#PCDATA)>
<!-- mode specifies what to do if the file already exists or to

file:///C|/temp/staxug/staxug.html (161 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 redirect standard error to the same file as standard output.
 The value must evaluate via Python to one of the following:
 'replace' - specifies that the file will be replaced.
 'append' - specifies that the process's standard error will
 be appended to the file.
 'stdout' - specifies to redirect standard error to the
 same file to which standard output is redirected.
 If a file name is specified, it is ignored.
-->
<!ATTLIST stderr
 if CDATA "1"
 mode CDATA "'replace'"
>

<!--
 The returnstdout element specifies to return in STAXResult
 the contents of the file where standard output was redirected
 when the process completes.
-->
<!ELEMENT returnstdout EMPTY>
<!ATTLIST returnstdout
 if CDATA "1"
>

<!--
 The returnstderr element specifies to return in STAXResult
 the contents of the file where standard error was redirected
 when the process completes.
-->
<!ELEMENT returnstderr EMPTY>
<!ATTLIST returnstderr
 if CDATA "1"
>

<!--
 The returnfiles (and returnfile) elements specify that the
 contents of the specified file(s) should be returned in
 STAXResult when the process completes. The value must evaluate
 via Python to a string or a list of strings. Multiple returnfile(s)
 elements may be specified for a process.
-->
<!ELEMENT returnfiles (#PCDATA)>
<!ATTLIST returnfiles
 if CDATA "1"
>

<!ELEMENT returnfile (#PCDATA)>
<!ATTLIST returnfile
 if CDATA "1"
>

<!--
 The stopusing element allows you to specify the method by
 which this process will be STOPed, if not overridden on the
 STOP command.

file:///C|/temp/staxug/staxug.html (162 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 The value is evaluated via Python to a string.
-->
<!ELEMENT stopusing (#PCDATA)>
<!ATTLIST stopusing
 if CDATA "1"
>

<!--
 The console element allows you to specify if the process should
 get a new console window or share the STAFProc console.

 use Must evaluate via Python to a string containing either:
 - 'new' specifies that the process should get a new console
 window. This option only has effect on Win32. This is
 the default for Win32 and OS/2 systems.
 - 'same' specifies that the process should share the
 STAFProc console. This option only has effect on Win32.
 This is the default for Unix systems.
-->
<!ELEMENT console EMPTY>
<!ATTLIST console
 if CDATA "1"
 use CDATA #REQUIRED
>

<!--
 Specifies that a static handle should be created for this process.
 The value is evaluated via Python to a string. It will be the
 registered name of the static handle. Using this option will also
 cause the environment variable STAF_STATIC_HANDLE to be set
 appropriately for the process.
-->
<!ELEMENT statichandlename (#PCDATA)>
<!ATTLIST statichandlename
 if CDATA "1"
>

<!--
 The process-action element specifies a task to be executed
 when a process has started.
-->
<!ELEMENT process-action (%task;)>
<!ATTLIST process-action
 if CDATA "1"
>

<!--
 The other element specifies any other STAF parameters that
 may arise in the future. It is used to pass additional data
 to the STAF PROCESS START request.
 The value is evaluated via Python to a string.
-->
<!ELEMENT other (#PCDATA)>
<!ATTLIST other
 if CDATA "1"

file:///C|/temp/staxug/staxug.html (163 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

>

<!--================== The STAX Job Element ===================== -->
<!--
 Specifies a STAX sub-job to be executed. This element is equivalent
 to a STAX EXECUTE request.

 The name attribute specifies the name of the job. The job name
 defaults to the value of the function name called to start the job.
 Its name and all of its element values are evaluated via Python.
 The job element must contain a location element and either a
 file or data element. This attribute is equivalent to the
 JOBNAME option for a STAX EXECUTE command.

 The clearlogs attribute specifies to delete the STAX Job and Job
 User logs before the job is executed to ensure that only one job's
 contents are in the log. This attribute is equivalent to the
 CLEARLOGS option for a STAX EXECUTE command. The default is the
 same option that was specified for the parent job. Valid values
 include 'parent', 'default', 'enabled', and 'disabled'.

 The monitor attribute specifies whether to automatically monitor the
 subjob. Note that 'Automatically monitor recommended sub-jobs' must
 be selected in the STAX Job Monitor properties in order for it to be
 used. The default value for the monitor attribute is 0, a false
 value.

 The logtcelapsedtime attribute specifies to log the elapsed time
 for a testcase in the summary record in the STAX Job log and on a
 LIST TESTCASES request. This attribute is equivalent to the
 LOGTCELAPSEDTIME option for a STAX EXECUTE command. The default is
 the same option that was specified for the parent job. Valid values
 include 'parent', 'default', 'enabled', and 'disabled'.

 The logtcnumstarts attribute specifies to log the number of starts
 for a testcase in the summary record in the STAX Job log and on a
 LIST TESTCASES request. This attribute is equivalent to the
 LOGNUMSTARTS option for a STAX EXECUTE command. The default is
 the same option that was specified for the parent job. Valid values
 include 'parent', 'default', 'enabled', and 'disabled'.

 The logtcstartstop attribute specifies to log start/stop records
 for testcases in the STAX Job log. This attribute is equivalent to
 the LOGTCSTARTSTOP option for a STAX EXECUTE command. The default
 is the same option that was specified for the parent job. Valid
 values include 'parent', 'default', 'enabled', and 'disabled'.

 The job element must contain either a job-file or job-data element.

 The job element has the following optional elements:
 job-function, job-function-args, job-scriptfile(s), and job-script

 Each of these optional elements may specify an if attribute.
 The if attribute must evaluate via Python to a true or false value.
 If it does not evaluate to a true value, the element is ignored.

file:///C|/temp/staxug/staxug.html (164 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 The default value for the if attribute is 1, a true value.
 Note that in Python, true means any nonzero number or nonempty
 object; false means not true, such as a zero number, an empty
 object, or None. Comparisons and equality tests return 1 or 0
 (true or false).
-->
<!ELEMENT job ((job-file | job-data),
 job-function?, job-function-args?,
 (job-scriptfile | job-scriptfiles)?,
 job-script*, job-action?)>
<!ATTLIST job
 name CDATA #IMPLIED
 clearlogs CDATA "'parent'"
 monitor CDATA #IMPLIED
 logtcelapsedtime CDATA "'parent'"
 logtcnumstarts CDATA "'parent'"
 logtcstartstop CDATA "'parent'"
>

<!--
 The job-file element specifies the fully qualified name of a file
 containing the XML document for the STAX job to be executed.
 The job-file element is equivalent to the FILE option for a STAX
 EXECUTE command.

 The machine attribute specifies the name of the machine where the
 xml file is located. If not specified, it defaults to Python
 variable STAXJobXMLMachine. The machine attribute is equivalent
 to the MACHINE option for a STAX EXECUTE command.
 -->
<!ELEMENT job-file (#PCDATA)>
<!ATTLIST job-file
 machine CDATA "STAXJobXMLMachine"
>

<!--
 The job-data element specifies a string containing the XML document
 for the job to be executed. This element is equivalent to the
 DATA option for a STAX EXECUTE command.

 The eval attribute specifies whether the data is be evaluated by
 Python in the parent job. For example, if the job-data information
 is dynamically generated and assigned to a Python variable, rather
 than just containing the literal XML information, then you would
 need to set the eval attribute to true (e.g. eval="1").
 The default for the eval attribute is false ("0").
 -->
<!ELEMENT job-data (#PCDATA)>
<!ATTLIST job-data
 eval CDATA "0"
>

<!--
 The job-function element specifies the name of the function element
 to call to start the job, overriding the defaultcall element, if any,

file:///C|/temp/staxug/staxug.html (165 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 specified in the XML document. The <function name> must be the name of
 a function element specified in the XML document. This element is
 equivalent to the FUNCTION option for a STAX EXECUTE command.
-->
<!ELEMENT job-function (#PCDATA)>
<!ATTLIST job-function
 if CDATA "1"
>

<!--
 The job-function-args element specifies arguments to pass to the
 function element called to start the job, overriding the arguments,
 if any, specified for the defaultcall element in the XML document.
 This element is equivalent to the ARGS option for a STAX EXECUTE
 command.

 The eval attribute specifies whether the data is to be evaluated
 by Python in the parent job. The default for the eval attribute
 is false ("0").
-->
<!ELEMENT job-function-args (#PCDATA)>
<!ATTLIST job-function-args
 if CDATA "1"
 eval CDATA "0"
>

<!--
 The job-script element specifies Python code to be executed.
 This element is equivalent to the SCRIPT option for a STAX
 EXECUTE command. Multiple job-script elements may be specified.

 The eval attribute specifies whether the data is to be evaluated
 by Python in the parent job. The default for the eval attribute
 is false ("0").
-->
<!ELEMENT job-script (#PCDATA)>
<!ATTLIST job-script
 if CDATA "1"
 eval CDATA "0"
>

<!--
 The job-scriptfile element (equivalent to the job-scriptfiles
 element) specifies the fully qualified name of a file containing
 Python code to be executed, or a list of file names containing
 Python code to be executed. The value must evaluate via Python to
 a string or a list of strings. This element is equivalent to the
 SCRIPTFILE option for a STAX EXECUTE command.

 Specifying only one scriptfile could look like either:
 ['C:/stax/scriptfiles/scriptfile1.py'] or
 'C:/stax/scriptfiles/scriptfiel1.py'
 Specifying a list containing 3 scriptfiles could look like:
 ['C:/stax/scriptfiles/scriptfile1.py',
 'C:/stax/scriptfiles/scriptfile2.py',

file:///C|/temp/staxug/staxug.html (166 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 C:/stax/scriptfiles/scriptfile2.py']

 The machine attribute specifies the name of the machine where the
 SCRIPTFILE(s) are located. If not specified, it defaults to Python
 variable STAXJobScriptFileMachine. This attribute is equivalent
 to the SCRIPTFILEMACHINE option for a STAX EXECUTE command.
-->
<!ELEMENT job-scriptfile (#PCDATA)>
<!ATTLIST job-scriptfile
 if CDATA "1"
 machine CDATA "STAXJobScriptFileMachine"
>

<!ELEMENT job-scriptfiles (#PCDATA)>
<!ATTLIST job-scriptfiles
 if CDATA "1"
 machine CDATA "STAXJobScriptFileMachine"
>

<!--
 The job-action element specifies a task to be executed after the
 sub-job has started. This task will be executed in parallel with
 the sub-job via a new STAX-Thread. The task will be able to use the
 STAXSubJobID variable to obtain the sub-job ID in order to interact
 with the job. If the job completes before the task completes, the
 job will remain in a non-complete state until the task completes.
 If the job cannot be started, the job-action task is not executed.
-->
<!ELEMENT job-action (%task;)>
<!ATTLIST job-action
 if CDATA "1"
>

<!--================= The Call-With-List Element =================== -->
<!--
 Perform a function with the referenced name with any number of
 arguments in the form of a list. The function attribute value
 and argument values are evaluated via Python.
-->
<!ELEMENT call-with-list (call-list-arg*)>
<!ATTLIST call-with-list
 function CDATA #REQUIRED
>

<!ELEMENT call-list-arg (#PCDATA)>

<!--================= The Testcase Status Element ================== -->
<!--
 Marks status result ('pass' or 'fail') for a testcase and
 allows additional information to be specified. The status
 result and the additional info is evaluated via Python.
-->
<!ELEMENT tcstatus (#PCDATA)>
<!ATTLIST tcstatus
 result CDATA #REQUIRED

file:///C|/temp/staxug/staxug.html (167 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

>

<!--================= The Return Element =========================== -->
<!--
 Specifies a value to return from a function.
-->
<!ELEMENT return (#PCDATA)>

<!--================= The Release Element ========================== -->
<!--
 The release element specifies to release a block in the job.
-->
<!ELEMENT release EMPTY>
<!ATTLIST release
 block CDATA #IMPLIED
>

<!--================= The Rethrow Element ========================= -->
<!--
 The rethrow element specifies to rethrow the current exception.
-->
<!ELEMENT rethrow EMPTY>

<!--================= The Raise Element ============================ -->
<!--
 A raise signal element raises a specified signal.
 Signals can also be raised by the STAX execution engine.
 The signal attribute value is evaluated via Python.
-->
<!ELEMENT raise EMPTY>
<!ATTLIST raise
 signal CDATA #REQUIRED
>

<!--================= The Call Element ============================= -->
<!--
 Perform a function with the referenced name.
 The function attribute value is evaluated via Python.
 Arguments can be specified as data to the call element.
 Arguments are evaluated via Python.
-->
<!ELEMENT call (#PCDATA)>
<!ATTLIST call
 function CDATA #REQUIRED
>

<!--================= The Loop Element ============================= -->
<!--
 The loop element performs a task a specified number of times,
 allowing specification of an upper and lower bound with an
 increment value and where the index counter is available to
 sub-tasks. Also, while and/or until expressions can be
 specified.
-->
<!ELEMENT loop (%task;)>

file:///C|/temp/staxug/staxug.html (168 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

<!-- var is the name of a variable which will contain the loop
 index variable. It is a literal.
 from is the starting value of the loop index variable.
 It must evaluate to an integer value via Python.
 to is the maximum value of the loop index variable
 It must evaluate to an integer value via Python.
 by is the increment value for the loop index variable
 It must evaluate to an integer value via Python.
 while is an expression that must evaluate to a boolean value
 and is performed at the top of each loop. If it
 evaluates to false, it breaks out of the loop.
 until is an expression that must evaluate to a boolean value
 and is performed at the bottom of each loop. If it
 evaluates to false, it breaks out of the loop.
-->
<!ATTLIST loop
 var CDATA #IMPLIED
 from CDATA '1'
 to CDATA #IMPLIED
 by CDATA '1'
 while CDATA #IMPLIED
 until CDATA #IMPLIED
>

<!--================= The Script Element =========================== -->
<!--
 Specifies Python code to be executed.
-->
<!ELEMENT script (#PCDATA)>

<!--================= The Parallel Element ========================= -->
<!--
 The parallel element performs one or more tasks in parallel.
-->
<!ELEMENT parallel (%task;)+>

Appendix E: STAX Extensions Document Type
Definition (DTD)
This section contains the DTD for defining STAX Extensions to be registered for the STAX service.

<!--
 STAX Extensions Document Type Definition (DTD)

 This DTD module is identified by the SYSTEM identifier:

 SYSTEM 'stax-extensions.dtd'

 This DTD is used for files specified using the EXTENSIONXMLFILE

file:///C|/temp/staxug/staxug.html (169 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 parameter when registering the STAX service with extensions.

-->

<!--================= STAX Extension File Definition =============== -->
<!--
 The root element extensions contains all other elements. It
 consists of one or more extension elements.
-->
<!ELEMENT stax-extensions (extension+)>

<!--================= The Extension Element ======================== -->
<!--
 Specifies a STAX extension. It can consist of 0 or more
 parameter elements, followed by 0 or more include-element or
 0 or more exclude-element elements.
-->
<!ELEMENT extension (parameter*,
 (include-element* | exclude-element*))>
<!ATTLIST extension
 jarfile CDATA #REQUIRED
>

<!--================= The Parameter Element ======================== -->
<!--
 Specifies a parameter for a STAX extension.
-->
<!ELEMENT parameter EMPTY>
<!ATTLIST parameter
 name CDATA #REQUIRED
 value CDATA #REQUIRED
>

<!--================= The Include Element ========================= -->
<!--
 Specifies to only register this element for a STAX extension
 instead of registering all elements specified in the extension
 jar file's manifest file.
-->
<!ELEMENT include-element EMPTY>
<!ATTLIST include-element
 name CDATA #REQUIRED
>

<!--================= The Exclude Element ========================= -->
<!--
 Specifies to excluce registering this element for a STAX extension
 instead of registering all elements specified in the extension
 jar file's manifest file.
-->
<!ELEMENT exclude-element EMPTY>
<!ATTLIST exclude-element
 name CDATA #REQUIRED
>

file:///C|/temp/staxug/staxug.html (170 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

Appendix F: References
● See the http://www.jython.org website for more information about Jython.
● See the http://www.python.org website for more information about Python.
● See the http://www.w3c.org website for more information about XML. See the

http://www.xml.org/xml/resources_focus_beginnerguide.shtml website for an XML Beginner's Guide.
● For more information about the XML Parser for Java used by STAX to validate and parse XML documents:

❍ See the http://w3.xml.ibm.com/xml4j website.
❍ Otherwise, see the http://xml.apache.org/xerces2-j website.

Appendix G: Jython and CPython Differences
Although in most cases Jython behavior is identical to the C-language implementation of Python (CPython), there are still cases
where the two implementations differ. If you are already a CPython programmer, or are hoping to use CPython code under Jython,
you need to be aware of these differences. Also, there is a time lag between a new CPython release and the corresponding Jython
release. STAX uses Jython 2.1 which is based on Python 2.1. Jython 2.1 cannot execute Python code that uses functions that were
provided in later versions of Python, such as Python 2.2.

Most Python modules that are written in Python work fine in Jython. A few types of modules will not run under Jython such as:

● Modules that contain functionality not included in a JVM

Some standard CPython modules depend on operating system calls that are not available under Java. The most notable of
these is os, which actually does run in Jython, but is missing much of its functionality.

● Modules that are implemented in C

A number of common CPython modules are implemented in C rather than Python, either for a speed boost or because the
module is a C wrapper around an external C library. The C modules, or any modules that depend on them, will not run in
Jython.

See the "Jython Essentials" book, written by Samuele Pedroni and Noel Rappin, for more information about the differences
between Jython and CPython.

Appendix H: Licenses and Acknowledgements

Jython

Jython is an implementation of the high-level, dynamic, object-oriented language Python written in 100% Pure Java, and
seamlessly integrated with the Java platform. It thus allows you to run Python on any Java platform.

file:///C|/temp/staxug/staxug.html (171 of 173) [4/17/2006 1:40:20 PM]

http://www.jython.org/
http://www.python.org/
http://www.w3c.org/xml
http://www.xml.org/xml/resources_focus_beginnerguide.shtml
http://w3.xml.ibm.com/xml4j
http://xml.apache.org/xerces2-j

STAF Execution Engine (STAX) Service User's Guide

Acknowledgement

This product includes software developed by the Jython Developers (http://www.jython.org/).

Licence

Jython Software License
=======================

Copyright (c) 2000, Jython Developers
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

 - Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.

 - Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in
 the documentation and/or other materials provided with the distribution.

 - Neither the name of the Jython Developers nor the names of
 its contributors may be used to endorse or promote products
 derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

XML Parser for Java (Xerces)

XML Parser for Java is a validating XML parser and processor written in 100% pure Java; it is a library for parsing and generating
XML documents. This parser easily enables an application to read and write XML data.

Acknowledgement

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

License

/*
 * The Apache Software License, Version 1.1

file:///C|/temp/staxug/staxug.html (172 of 173) [4/17/2006 1:40:20 PM]

STAF Execution Engine (STAX) Service User's Guide

 *
 *
 * Copyright (c) 1999-2004 The Apache Software Foundation. All rights
 * reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. The end-user documentation included with the redistribution,
 * if any, must include the following acknowledgment:
 * "This product includes software developed by the
 * Apache Software Foundation (http://www.apache.org/)."
 * Alternately, this acknowledgment may appear in the software itself,
 * if and wherever such third-party acknowledgments normally appear.
 *
 * 4. The names "Xerces" and "Apache Software Foundation" must
 * not be used to endorse or promote products derived from this
 * software without prior written permission. For written
 * permission, please contact apache@apache.org.
 *
 * 5. Products derived from this software may not be called "Apache",
 * nor may "Apache" appear in their name, without prior written
 * permission of the Apache Software Foundation.
 *
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * ==
 *
 * This software consists of voluntary contributions made by many
 * individuals on behalf of the Apache Software Foundation and was
 * originally based on software copyright (c) 1999, International
 * Business Machines, Inc., http://www.ibm.com. For more
 * information on the Apache Software Foundation, please see
 * <http://www.apache.org/>.
 */

file:///C|/temp/staxug/staxug.html (173 of 173) [4/17/2006 1:40:20 PM]

	Local Disk
	STAF Execution Engine (STAX) Service User's Guide

